
Test Driven Development (TDD)
Rudi Stene



From “test first” to “test driven”

• Difficult to create a complete test
• You must start thinking about implementation 

details first
• Big and complex tests.

• Testing multiple tings in one test
• Often you end up refactoring or fixing the test 

when implementing.
• Testing classes and methods over focus on 

behavior.
• Tests tightly coupled to implementation. 



Classic TTD
The three laws of TDD:
1. You are not allowed to write any 

production code unless it is for making 
failing unit test pass

2. You are not allowed to write any more of 
a unit test than is sufficient to fail

3. You are not allowed to write any more 
production code that is sufficient to pass 
the one failing unit test.

Source: Alcor Academy, Walking, lesson 1, page 14 



Classic TTD

Baby steps:
• Fake implementation

• Obvious implementation (use 
Transformation Priority Premise)

• Triangulation with the next test

We refactor only when tests passes.
• Extract duplication only when you see it for 

the third time 
(Rule of Three)

Source: Alcor Academy, Walking, lesson 1, page 14 



Classic TDD

- Test behavior, not implementation details.
- Name tests so it gives a description of the behavior.
- Tests can be used as documentation when named 

properly.
- Explore one degree of freedom at a time

- Organize unit test into three blocks:
1. Arrange
2. Act
3. Assert



TPP – Transformation Priority Premise

• Prefer transformation from the top of the following list.
• Transformations ordered by complexity.

Source: Alcor Academy, Walking, lesson 3, page 4 



Thanks for your attention
Any questions?

Contact information:
rudi.stene@bouvet.no

rudistene

mailto:rudi.stene@bouvet.no

