It L RSN, Pt lestren, rex,) §
A Ce e conter, itbe i ot 3

AT BT ST T Lree, . e
4 Srea.tody.wmail 45
Fea.bosy,
R W s Sedesk U
B]
et i nec §

L COrR. Wy BAAIVIAS o Q00 CAT B §
VBE 41 = 1o Lrrert Pasnvaeds 4 cat 1O,
ere.sTAt - 420;
et retlered:

b}

)

functien Leerer, waarl ©

9 R et Dot

Test Driven Development (TDD)

Rudi Stene

bouvet

From “test first” to “test driven”

 Difficult to create a complete test

* You must start thinking about implementation
details first

- Big and complex tests.

« Testing multiple tings in one test

« Often you end up refactoring or fixing the test
when implementing.

« Testing classes and methods over focus on
behavior.

« Tests tightly coupled to implementation.

‘ ‘ ® bouvet

Classic TTD

The three laws of TDD:

1. You are not allowed to write any
production code unless it is for making
failing unit test pass

2. You are not allowed to write any more of
a unit test than is sufficient to fail

3. You are not allowed to write any more
production code that is sufficient to pass
the one failing unit test.

RED

Write a
failing test
REFACTOR ' TDD GREEN
Improve code Write just
while passing enough code to
the test pass the test

Source: Alcor Academy, Walking, lesson 1, page 14

‘ ‘ ® bouvet

Classic TTD

Baby steps:
« Fake implementation

* Obvious implementation (use
Transformation Priority Premise)

« Triangulation with the next test

We refactor only when tests passes.

« Extract duplication only when you see it for
the third time
(Rule of Three)

RED

Write a
failing test
REFACTOR ' TDD GREEN
Improve code Write just
while passing enough code to
the test pass the test

Source: Alcor Academy, Walking, lesson 1, page 14

‘ ‘ ® bouvet

Classic TDD

- Test behavior, not implementation details.
- Name tests so it gives a description of the behavior.
- Tests can be used as documentation when named

properly.
- Explore one degree of freedom at a time

- Organize unit test into three blocks:
1. Arrange
2. Act
3. Assert

‘ ‘ ® bouvet

TPP - Transformation Priority Premise

« Prefer transformation from the top of the following list.

« Transformations ordered by complexity.

TRANSFORMATION

{} == nil

nil => constant

constant => constant+
constant => scalar
statement => statements
unconditional => conditional
scalar => array

array => container
statement => recursion
conditional => loop
recursion => tail recursion
expression => function
variable => mutation
switch case

#
1
2
3
4
5
6]
7
8

Source: Alcor Academy, Walking, lesson 3, page 4

STARTING CODE

a1l

. W l o

. i 1 r + W ‘. r
1 argument

1 arguments

FINAL CODE
return nil
return "1
return “17 4+ W2¥
return argument
arguments

if (condition)return arguments
[dog, cat]
{dog = “DOG", cat = “CAT"}
a + recursion

le (condition)

recursion

‘ ‘ ® bouvet

Thanks for your attention

Any gquestions?

Contact information:

R
@ rudistene

bouvet

mailto:rudi.stene@bouvet.no

