TDD
TicTacToe kata
using
Reactive Extensions

ls_;a Henning Torsteinsen



What’s this?

* Applying TDD and object calisthenics to the Tic Tac Toe kata.

* Secret ingredient:

Using Reactive Extensions to only expose a single public
property.

* This is an experiment to completely hide the

implementation details, and reduce dependencies as much
as possible.



Start with at failing test...

ﬁiP5tPlayEPISKE}

winner = X;
ticTacToeReactive = TicTacToeReactive();
ticTacToeReactive.Messages.Subscribe(wnr => winner = wnr);

Assert.AreEqual(None, winner);

... by pretending the class is already there.



Fill in the blanks, and implement just enough
to make the test pass.

[ T :'-':. L ] ..

T
L

ar player = X;
rar ticTacToeReactive = new TicTacToeReactive

ar messages = ticTacToeReactive.Messages;
messages.Where(msg => msg is CurrentPlayerMessage).Subscribe(wnr => player = ({(CurrentPlayerMessage)wnr).CurrentPlayer);

messages.OnNext(new RequestCurrentPlayer());

Assert.AreEqual (X, player);



wblic Subject<GameMessage> Messages = new Subject<GameMessage>();

Sidenote...

Messages.Where(msg => msg is RequestCurrentPlayer).Subscribe(GetCurrentPlayer);

* More code 4
nEEdEd to get __ Ft;at;:ur*renépla;rer{: ameMessage obj)
first test {
passing when
using Reactive
Extensions

Messages.Onhext(ne: rMessage(X));

CurrentPlayer = player;




Then refactor...

* Not much to do yet but move all classes out into their own file in
correct folder.



Then add a new failing test...

id SecondPlayerIsPlayero()

player = X;
r ticTacToeReactive = new ctive();

messages = ticTacTueReact;ue.HESSages'

is CurrentPlayer }.Subscribe(plrMsg => player = ((CurrentPlayerMessage)plrMsg).CurrentPlayer);

messages.Where(msg => msg i:

TEae

Iessage

messages .Onlext(new PlaceMessage(TopLeft));

sert.Arebqual(0, player);

eMes Sag :_'>{}Jr

Subject<Game

... and code to
e iﬁ?itﬁlh=i- oeReactive
make it work
Messages.Where(msg => msg is R nnerMessage).Subscribe(GetWinner);
is A-quT:uLL.*Eﬁt:lr r).Subscribe{GetCurrentPlayer);

Messages.Where{msg => msg is
= PlaceMessage).Subscribe(Place);

Messages.Where{msg => msg

Place{ﬁﬂ =

Messages.OnNext(n:




Refactor common Arrange code

setUp()

~ ticTacToeReactive = nai
_messages = ticTacToeReactive.Messages
_messages.Where(msg => msg is 1 ) -Subscribe(wnr => _player = ({ b wnr).CurrentPlayer);

ﬁléyerISX\}

_messages.Oniext(new

AreEqual (X, player);

bELnn&P a_ééisbié}
_messages.OnNext(new P (TopLeft));

-AreEqual(0, _player);




NotHaves

messages . OnNext (

ert.AreEqual(Mone, winner);

Then add new test and e

° ° ° | ges . OnNext | Pl TopLeft));
ges . OnNext Pl ttomLeft));
implementation... until
eee ges . OnNext Pl e(BottomMiddle));

messages . OnNext e(TopRight));

all tests done and game
IS Complete O M o

es.OnNext( Fla e(MiddleMiddle)});
.OnNext ( Pl TopLeft)

es . OnNext Pla e(BottomLeft));

es.OnNext( Pl e(TopMiddle));

es .OnNext Pla e(BottomMiddle));
.OnNext( Pl TopRight));

ContainsAllXs()
_messages . OnNext e(MiddleMiddle));
_messages .OnNext(
ages .OnNext (

ges . OnNext |
_messages.OnNext(

ert.AreEqual(X, _winner);




I board =
e = Messages =
_currentPlayer = X;

<Demonstrate refactor here...>

Pla el

f (_board.IsTaken{message.Position))

i
E g
L

FEtUFﬁ;
1

1
_board.MarkAt(message.Position, currentPlayer);

AlternatePLayer();

PublishGameState(null);

lternatePLayer()
if ( currentPlayer == D)

_currentPlayer = X;

return;
_currentPlayer = O;

PublishGameState ob3j)

winner = board.FindWinner();
Messages.Onhext (new Wi winner));

Messages.OnNext(ne E : . currentPlayer));




Refactor result

ISubject«! _messages;

(IBoard board, ISubject messages)

board = board;
_messages = messages;

_messages.Where(msg => is R g .Subscribe(_ =»> PublishGameState());
_messages.Where(msg =: is ) .Subscribe(msg => Place(msg

message)
_board.MarkAt(message.Position);

PublishGameState();

id PublishGameState()

winner = board.FindWinner();

currentPlayer = board.GetCurrentPLayer ()
_messages.OnNext(new GameStateMessage(currentPlayer, winner));




What did | learn™?

* Many responsibilities to single responsibility
e Subscriptions reads as a table of contents for the class
e Can make orchestrator generic, using interfaces for each game type.



<End of presentation>

S -

THANK YOU FOR YOUR TIME! LET’S KEEP IN TOUCH:
GITHUB.COM/HENNINGNT
WWW.LINKEDIN.COM/IN/HENNINGNT/



