

Content

*Definition
*Bad smells
*Refactoring
*Conclusion

Definition
=

M‘g code fs
perfecf! M

”
2 |

N

y
What are code smells??22?

The term was popularized by Kent Beck in the %/
late 90s and its usage increased after /N
appearing in the well known Martin Fowler’ s '

book Refactoring.

L.But T ean smell it...

Code Smells are indicators that sonjk
not a problem just because they ar
there is a problem or not.

thin; "may be wrong in a piece of code. They are
Il, a'deeper analysis is needed to determine if

Bad Smells: Classification

* Class/Method organisation ' \ N

e Large Class, Long Method, Long Parameter List,
Lazy Class, Data Class, ... | S

* Lack of loose Coupling and Cohesion)
e |nappropriate Intimacy, Feature Envy, Data Clumps,
Shotgun Surgery, ... |

* Too much or too little delegation
 Message Chains, Middle Man, ...

* Non Object-Oriented control or date structutes?
e Switch Statements, Primitive Obsession, * 1\

&
-

e Other confusing Smells:
e Comments, Code Duplication, Dead Code ...

Cartoons borrowed from: https://sourcemaking.com/refactoring/smells

ENEANERAN

YV V VY

w &\\
They are not bugs \\

They are not technically incorrect S
They do not block a working program]

Indicators of weaknesses in design
Indicators of slow development

Indicators of high risk of introducing new bugs and ---—=s
errors |

e

It’s time to refactor!

Refactoring

Refactoring is the process of changing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal structure.

When to refactor ?
> when adding a feature ‘ﬂjg = R

» when fixing a bug

» during a code review

Cartoons borrowed from: https://sourcemaking.com/refactoring/smells

— R . \
2\ . »

The main Refactoring Techniqﬁ}

o Red-Green-Refactor > used in TDD ~

o Refactoring by Abstraction

o Composing Method

o Simplifying Methods

o Moving Features Between Objects

o Preparatory Refactoring - This is done when-a déwg
feature

r A WA
: .

!

My experience w%ph S

—

e | think that most of the Code Smells in our Sonar

 They are mainly Clear Code cases:

Unused variables

Unused imports

Commented code

Expected { after ,if” condition
Unreachable code

Missing semicolon

Not immediatly returned value

O O O O O O O

Conclusion

!

Code Smell detection is a challenging task

.
\
1

Bad Smells are only a recipe bookto help us fin

It isn’t always easy or even useful to use

References:

’

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Robé
Improving the Design of Existing Code. Addison-Wes:
A quick intro to code smells
https://dev.to/jmirl7/a-quick-intro-to-code-smells;3eie | |
Bad Code Smells - Course , Software Maintenance and Evolution”,
given by Prof. Kim Mens at UCL, Belgium i
https://www.slideshare.net/kim.mens/bad-code-smiglls'*
Refactoring Catalog - Martin Fowler |
https://refactoring.com/catalog/

1999.

N

-

R factoring:

V.

REFACTORING

IMPROVING THE DESIGN
oF Existing Cobe

MARTIN FOWLER

With symtribstioen by Kemit Beck, John Brant,
Willianm Opdyke, »« Don Roberts

PEARSON

https://dev.to/jmir17/a-quick-intro-to-code-smells-3eie
https://www.slideshare.net/kim.mens/bad-code-smells
https://refactoring.com/catalog/

-

4

Mgl o e

!
(T
{

\AL

