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What are code smells??22?

The term was popularized by Kent Beck in the %/
late 90s and its usage increased after /N
appearing in the well known Martin Fowler’ s '

book Refactoring.

L.But T ean smell it...

Code Smells are indicators that sonjk
not a problem just because they ar
there is a problem or not.

thin; "may be wrong in a piece of code. They are
Il, a'deeper analysis is needed to determine if



Bad Smells: Classification

* Class/Method organisation ' \ N

e Large Class, Long Method, Long Parameter List,
Lazy Class, Data Class, ... | S

* Lack of loose Coupling and Cohesion )
e |nappropriate Intimacy, Feature Envy, Data Clumps,
Shotgun Surgery, ... |

* Too much or too little delegation
 Message Chains, Middle Man, ...

* Non Object-Oriented control or date structutes?
e Switch Statements, Primitive Obsession, * 1\

&
-

e Other confusing Smells:
e Comments, Code Duplication, Dead Code ...

Cartoons borrowed from: https://sourcemaking.com/refactoring/smells
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They are not bugs \\

They are not technically incorrect S
They do not block a working program ]

Indicators of weaknesses in design
Indicators of slow development

Indicators of high risk of introducing new bugs and ---—=s
errors |

e

It’s time to refactor!




Refactoring

Refactoring is the process of changing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal structure.

When to refactor ?
> when adding a feature ‘ﬂjg = R

» when fixing a bug

» during a code review

Cartoons borrowed from: https://sourcemaking.com/refactoring/smells
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The main Refactoring Techniqﬁ}

o Red-Green-Refactor > used in TDD ~

o Refactoring by Abstraction

o Composing Method

o Simplifying Methods

o Moving Features Between Objects

o Preparatory Refactoring - This is done when-a déwg
feature
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My experience w%ph S
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e | think that most of the Code Smells in our Sonar

 They are mainly Clear Code cases:

Unused variables

Unused imports

Commented code

Expected { after ,if” condition
Unreachable code

Missing semicolon

Not immediatly returned value
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Conclusion

!

Code Smell detection is a challenging task
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Bad Smells are only a recipe bookto help us fin

It isn’t always easy or even useful to use
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R factoring:

V.

REFACTORING

IMPROVING THE DESIGN
oF Existing Cobe

MARTIN FOWLER

With symtribstioen by Kemit Beck, John Brant,
Willianm Opdyke, »« Don Roberts

PEARSON
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