
On the trail of 

Code Smells

Budapest, 29. April 2021

Lapos Zsófia

„IF it stinks change it.” – Martin Fowler



Content

• Definition

• Bad smells

• Refactoring

• Conclusion



Code Smells are indicators that something may be wrong in a piece of code. They are 
not a problem just because they are a smell, a deeper analysis is needed to determine if 
there is a problem or not.

Definition

What are code smells?????

The term was popularized by Kent Beck in the 
late 90s and its usage increased after 
appearing in the well known Martin Fowler’s 
book Refactoring. 



• Class/Method organisation
• Large Class, Long Method, Long Parameter List, 

Lazy Class, Data Class, …

• Lack of loose Coupling and Cohesion
• Inappropriate Intimacy, Feature Envy, Data Clumps, 

Shotgun Surgery, …

• Too much or too little delegation
• Message Chains, Middle Man, …

• Non Object-Oriented control or date structures
• Switch Statements, Primitive Obsession, …

• Other confusing Smells:
• Comments, Code Duplication, Dead Code …

Bad Smells: Classification

Cartoons borrowed from: https://sourcemaking.com/refactoring/smells



 Indicators of weaknesses in design

 Indicators of slow development

 Indicators of high risk of introducing new bugs and 

errors

 They are not bugs
 They are not technically incorrect
 They do not block a working program

It’s time to refactor!



Refactoring

Refactoring is the process of changing a software system in such a way that it does not alter 
the external behavior of the code yet improves its internal structure.

When to refactor ? 

 when adding a feature

 when fixing a bug

 during a code review

Cartoons borrowed from: https://sourcemaking.com/refactoring/smells



The main Refactoring Techniques

o Red-Green-Refactor

o Refactoring by Abstraction

o Composing Method

o Simplifying Methods

o Moving Features Between Objects

o Preparatory Refactoring

 used in TDD

 This is done when a developer notices the need for refactoring while adding a new 
feature

…and others…



• I think that most of the Code Smells in our Sonar System are 
not real code smells like the ones we learned about here

• They are mainly Clear Code cases:

o Unused variables 
o Unused imports 
o Commented code
o Expected { after „if” condition
o Unreachable code
o Missing semicolon
o Not immediatly returned value 
o …..

My experience with Sonar



Conclusion

 Code Smell detection is a challenging task

 Bad Smells are only a recipe book to help us find the rigth refactoring patterns to apply

 It isn’t always easy or even useful to use

 Not all code smells should be "fixed" - sometimes code is perfectly acceptable in 
its current form, depends on context and personal style

 Think twice before refactoring something, most probably there is no need to clean all the 
smells of your code base, and certainly not all at once.



References:

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts: Refactoring: 
Improving the Design of Existing Code. Addison-Wesley, 1999.
A quick intro to code smells
https://dev.to/jmir17/a-quick-intro-to-code-smells-3eie
Bad Code Smells - Course „Software Maintenance and Evolution”, 
given by Prof. Kim Mens at UCL, Belgium
https://www.slideshare.net/kim.mens/bad-code-smells
Refactoring Catalog - Martin Fowler
https://refactoring.com/catalog/

https://dev.to/jmir17/a-quick-intro-to-code-smells-3eie
https://www.slideshare.net/kim.mens/bad-code-smells
https://refactoring.com/catalog/


Thank you for your 

attention!


