Budapest, 1. -ri'1 2021
Lapos Zséfia



Content

 What is TDD?
* Examples

* Advantages

e Conclusion




[est-Driven Developmet

opularized by Kent Beck, 2003

2T

are development that focuses on an Write «a Make e

: e development cycle where the accent is ga\m 9
] on writing test cases before the actual +est PSS

Ire or function is written. TDD utilizes repetition test

development cycles. \ /







-impurt‘urg.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

class RomanCalculatorShould {

@Test
void calculateIForDigiti() {

RomanCalculator romanCalculator = new RomanCalculator();
String result = romanCalculator.calculate( zrabicnumber 1);

assertEguals( expected: "I",result);

@Test
void calculateIIForDigit2() {

RomanCalculator romanCalculator = new RomanCalculator();
String result = romanCalculator.calculate( amsbicnumber 2);

assertEguals( epected: "II", result);

amples: Roman numbers calculator

The first small test and a piece of code:
— the simplest code to pass the test

The next small test and some code
to get the test to pass

public class RomanCalculator {
public String calculate(int arabicnumber) {

if (arabicnumber == 1) {
return "I";
I

return "II";



fimpnri'arg.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

class RomanCalculatorShould {

@Test
void calculateIForDigitl() {

RomanCalculator romanCalculator = new RomanCalculator();
String result = romanCalculater.calculate( arabicnumber 1);

assertEquals( erpected: "I",result);

@Test
void calculateIIForDigit2() {

RomanCalculator romanCalculator = new RomanCalculator();
String result = romanCalculator.calculate( arsbicnumber 2);

assertEquals( sxpected: "II",result);

BTest
void calculateIVForDigit4() {

RomanCalculator romanCalculator = new RomanCalculator();

String result = romanCalculator.calculate( arsbicnumber 4);

assertEguals( expected: "IV, result);

We moved forward in such tiny steps with each test case
that it was impossible to lose the thread.

public class ﬁnmanﬁaiﬁuiﬁiﬁr {
public String calculate(int arabicnumber) {

if (arabicnumber == 1} {
return "1I";

if (arabicnumber == 2) {
return "II";

if (arabicnumber == 4} {
return "IV";
}

return ™My




public class RomanCalculator {

end FESUIt (without TPP) was more ' public String calculate(int arabicnumber) {
String romanMumber = "";
l expECtEd. romanNumber = concat@To3RomanI(arabicnumber);

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import static org.junit.jupiter.api.Assertions.ossertEguals;

if (arabicnumber »>= 5 && arabicnumber <= B8) {
romanNumber = "\";
romanNumber += concat@To3RomanI( count arablcnumber - 5);

class RomanCalculatorShould { i

@ParameterizedTest if (arabicnumber == 4) {

BCsvSource ({ romanNumber = “IV";
rll: IIIrI' }
I'sz IIIIII:

e w3, 'III'", if (arabicnumber == 18) {
i;; g, VIN'Y, romanNumber = "X";

||5; |||I|||||" ]_
I'I&: llllllIlI'I’
"7, 'VvVII'“, return romanNumber;
I!Br 'UIII'“: }
rllm: lel’l}

b private String concat®@To3RomanI(int count) {

String romanNumber = "";
for (int 1 = 6; 1 < Math.min(count, 3); 1s++) {
romanNumber += "I";

void calculateRomanNumberForArabicDigit(int arabicNumber, String romanNumber) {

RomanCalculator romanCalculator = new RomanCalculator();

ks

String result = romanCalculator.calculate(arabicNumber); return romanNumber;

assertEquals(romanNumber, result); 5

this solution wo
ional progra




* Better program design and higher code quality

* When writing tests, we have first to define the goal of
what we want to realize with the piece of code.

* Itisimportant to think about what the code should not
accept, in addition to what it should accept.

* All the possible mistakes and errors are already taken into
account. Here, we write the necessary tests to avoid all
the failures

-> The code appears to give better results.
“Preventing bugs is not a TDD goal. It's more like a

side effect.”
e When the code has a clear structure and fits the test

requirements, it’s very simple, straightforward and short.




* Code flexibility and easier maintenance
* Implementation of TDD reduces the percentage of bugs by 40 - 80 percent, which
consequently means that less time is required for fixing them.
* The refactoring encourages a pure and attractive code structure, it stands for
optimization of existing code to make it more readable and easy to introduce.

 Each branch is covered
* An interesting side effect of using TDD is that it should result in 100% code coverage. If
all the application code we write has to pass tests, then in theory we shouldn't have
written application code that is untested.

e We will get a reliable solution

« With TDD, we can be sure about the reliability of the developed solution. The tests
help us to understand if everything goes right after refactoring or adding a new
feature.

 Without TDD, we go blind with the latest changes, and we are not quite sure how
recent development will work with the perfect code built previously. Any new changes
can break the solution.




“onclusion

est-driven development can help us to build software that is:
eliable
ly usable
sy to extend with new features

mes with a short feedback loop and focuses on what’s important.
atifully-structured code is easier to modify, extend, test, and maintain.

'_'cleaner and simpler the code is, the fewer efforts we’ll have to put into modification or

. . . !
—> This directly contributes to our project’s success.




My first experience with mob programming:
 Sometimes it can be confusing, but through
this programming practice | can learn tc

develop in a better style

My '
oly the good habits c

.
9 > 95 ’W S
P X T ’ . e Ty
T i S TR N ST
L, yo- o, ol ; s "4 )
] e PRTENSP. W TN ™




oqu you cah
start Now!

roge!

okay Nice so test failed...
Now we ca Start
building the bridge!

Thank you for your

attention!




