
My personal

„growth” in

the world of

TDD

Budapest, 1. April 2021

Lapos Zsófia

Content

• What is TDD?

• Examples

• Advantages

• Conclusion

Test-Driven Developmet
Popularized by Kent Beck, 2003

 Test-Driven Development (TDD) is a methodology

in software development that focuses on an

iterative development cycle where the accent is

placed on writing test cases before the actual

feature or function is written. TDD utilizes repetition

of short development cycles.

 The product requirements are transformed into very

specific test cases and then the software is

enhanced for the tests to pass.

 Test written before the
code

This doesn’t mean writing all of the tests
and then writing all of the code.

• We start by writing just one test,
a very small failing test.

• Then we write some code, just
enough code to get the test to
pass.

• Then we write another small test.
• …. and another small test

• The code and the tests are
born and grow together.

• The test-ability of the code is
„build-in”:

 Testing is built right into the
development cycle, not after the fact

Examples: Roman numbers calculator

The first small test and a piece of code:

 the simplest code to pass the test

The next small test and some code
to get the test to pass

We moved forward in such tiny steps with each test case
that it was impossible to lose the thread.

The end result (without TPP) was more
than I expected.

Probably this solution would be born much later
with traditional programming methods.

• Better program design and higher code quality
• When writing tests, we have first to define the goal of

what we want to realize with the piece of code.

• It is important to think about what the code should not
accept, in addition to what it should accept.

• All the possible mistakes and errors are already taken into
account. Here, we write the necessary tests to avoid all
the failures

 The code appears to give better results.

• When the code has a clear structure and fits the test
requirements, it’s very simple, straightforward and short.

Advantages

• Code flexibility and easier maintenance
• Implementation of TDD reduces the percentage of bugs by 40 - 80 percent, which

consequently means that less time is required for fixing them.
• The refactoring encourages a pure and attractive code structure, it stands for

optimization of existing code to make it more readable and easy to introduce.

• Each branch is covered
• An interesting side effect of using TDD is that it should result in 100% code coverage. If

all the application code we write has to pass tests, then in theory we shouldn't have
written application code that is untested.

• We will get a reliable solution
• With TDD, we can be sure about the reliability of the developed solution. The tests

help us to understand if everything goes right after refactoring or adding a new
feature.

• Without TDD, we go blind with the latest changes, and we are not quite sure how
recent development will work with the perfect code built previously. Any new changes
can break the solution.

Conclusion

Test-driven development can help us to build software that is:
 reliable
 fully usable
 easy to extend with new features

It comes with a short feedback loop and focuses on what’s important.

A beautifully-structured code is easier to modify, extend, test, and maintain.
The cleaner and simpler the code is, the fewer efforts we’ll have to put into modification or
updates.

 This directly contributes to our project’s success.

My first experience with mob programming:
• Sometimes it can be confusing, but through

this programming practice I can learn to
develop in a better style

My first goal:
• Get used to and apply the good habits of

TDD learned here

Thank you for your

attention!

