
Alcor Training
Walking
Andy Nyffenegger



A look back

• in 2013 I did the RomanNumber Kata on my commute to work

• Starting from scratch each time

• 6 times dec -> roman 

• 28 times roman -> dec

• 2 times both ways

• In 2016 I started again 

• 6 times roman -> dec



2013

• Work in advance:
• Defining a mapping table with all the values upfront

• Big Steps:
• Very few tests with numbers (99, 666, 999)

• Tests written last 

• All test cases in one test, sometimes kind of parameterized

• Very little refactoring (as I remember)

• no use of IDE refactoring capabilities (Eclipse)

• Most were „operational“, but still had flaws (IXI)

• Code mostly hard to read



2016

• After first TDD training (1/2 day)

• No upfront coding

• Test first

• All single Tests (very repetitive)

• None of the implementations was finished (Trains got faster?)

• No refactoring

• No use of IDE capabilities



2021: Statistics?

• very time consuming

• only the first pass through a third of the code took several hours

• what focus?

• the code is about the same throughout

• Not very interesting for the audience



2021 let‘s have a closer look: Test first



2021 let‘s have a closer look: Test first

Test class name differs from production name

Multiple asserts in one test

No arrange act assert

Use static import

..Test instead of ..Should



2021 closer look: Implementation



2021 All Object Calistenics rules violated?

 Only one level of indentation per method

 Don’t use the ELSE keyword

Wrap all primitives and strings

 First class collections (wrap all collections)

 Only one dot per line

 No abbreviations

 Keep all entities small

 No classes with more than two instance 
variables

 No public getters/setters/properties



2021 What else is wrong?

Static methods!!!

Why Dec (Decimal)? should be Integer

Use final

What are all those 
calculations for? 

Avoid null



2021 The solution

Refactoring!



2021 The solution: Refactoring

Have a go at it, I will gladly provide the code.



Remark

When doing a kata like this:

• don‘t follow a fix time restriction

• finish the code properly

• have a fixed set of rules 

• skip on rules rather then code quality


