Summary of the ALCOR Academy Training Programme

ALCOR

academy

Mike Mugglin

CSS Versicherung — INTRAS — ARCOSANA - Sanagate



Content

» Motivation
* WALKING
* RUNNING
* FLYING

» Conclusion



Motivation

* | had a great time in the last 2.5 month and | wanted to recap
the key points of this training programme

* | just wanted us to
remember the
concepts/guidelines/methods/...
we learned




Walking

CSS Versicherung



CSS Versicherung

TDD

Classic TDD

Main characteristics

-
e 4
e 3

vl

Design happens during refactoring

Usually tests are state-based

When refactoring the unit under test can grow
to multiple classes

Mocks are rarely used, usually only for
external systems isolation

No upfront design assumptions. Design
emerges completely from code, hence it
solves over-engineering problems.

Easy to understand due to state-based tests
and no design upfront.

Often used with the 4 rules of simple design
Good for exploration when only input/output
couples are known (black box)

Great when we can’t rely on a domain expert
or domain language (algorithms, data
transformation, etc.)

@ Lesson 1

Main problems

- Exposing state for test purposes only

- Refactoring step is often skipped by
inexperienced practitioners and left as the
final big refactoring step

- The public interface of the units under test are
created accordingly to the criteria “| think | will
need this public methods”, which doesn’t
always fit well with the rest of the system

= Can be slow and wasteful when we know that
a class has too much responsibility and other
classes could be extracted early on

ALCOR

academy



TDD

The three laws of TDD / baby steps

1) You are not allowed to write any
RED production code unless it is for making a
Write failing unit test pass

failing test 2) You are not allowed to write any more of
a unit test than is sufficient to fail.
(compilation failure is a failure)

3) You are not allowed to write any more
production code than is sufficient to

REFACTOR GREEN ” .
Improve code Write just pass the one failing unit test.

while passing enough code to

the test pass the test Refactoring -> use the Rule of Three:

Extract duplication only when you see it for
the third time

@ Lesson 1 qLCQR

academy

CSS Versicherung



CSS Versicherung

TDD

Baby steps - the three ways forward

@ Lesson 1

1)

1)

1)

Fake implementation
When you hard code exactly the value you need to pass
the test

Obvious implementation

When you are sure of the code you need to write. This is
what you will be using more often to move forward
quickily.

Triangulation with the next test

When you want to generalize a behaviour but are not
sure how to do it. Starting with fake implementation and
then adding more tests will force the code to be more and
more generic. Complete one dimension first and then
move on the next one with another test case.

ALCOR

ademy



Transformation Priority Premise

Transformation Priority Premise - What is[‘Obvious implementation” ?

# TRANSFORMATION STARTING CODE FINAL CODE

1 {} => nil return nil

2 nil => constant return nil return “1”

3 constant => constant+ rgturn w1 return “17 + “2”

4 constant => scalar return “17” + “2~ return argument

5 statement => statements return argument return arguments

6 unconditional => conditional return arguments if (condition)return arguments
7 scalar => array dog [dog, cat]

8 array => container [dog, cat] {dog = “DOG"”, cat = “CAT"}
9 statement => tail recursion a + b a + recursion

10 conditional => loop if (condition) while (condition)

11 tail recursion => full recursion a + recursion recursion

12 expression => function today - birthday Calculatelge ()

13 variable => mutation day var day = 10; day = 11;

14 switch case

' Lesson 3 ALCOR

academy

CSS Versicherung



TDD Habits

TDD Habits

Unit Tests Foundation principles

- Tests should test only one single behaviour each
= Only one logical assertion per test

- Tests must be mutually independent (they must run in any order)

-> Don’t mix state and collaboration assertions
¢ state assertion -> when asserting on return value or object public property

¢ collaboration assertion -> when verifying object interactions on a mock

Lesson 2 NING PRO VIE FILCOR

academy

CSS Versicherung



CSS Versicherung

TDD Habits

TDD Habits - test smells

- Exception swallowing in test

- Not testing anything

Vool

\

2K 2 2’

-

Excessive setup

Too many assertions

Test too long

Checking internals

Checking more than strictly necessary
Working only on dev machine

Testing or containing irrelevant
information

Chatty test writing lines to console or logs

@ Lesson 2

\)

A

Test not belonging logically to the Fixture
Obsolete test

Hidden functionality buried in the setup
Bloated construction impeding test
readability

Unclear failing reason

Conditional test logic

Test logic in production code

Erratic/ Flaky test

ALCOR

academy

10



CSS Versicherung

8.
9.

NoOaRs~EOD =~

Object Calisthenics

Object Calisthenics rules

Only one level of indentation per method
Don’t use the ELSE keyword

Wrap all primitives and strings

First class collections (wrap all collections)
Only one dot per line deg-Redy-Tail WaeH
No abbreviations

Keep all entities small
[10 files per package, 50 lines per class, 5 lines per method, 2 arguments per method]

No classes with more than two instance variables
No public getters/setters/properties

> => dog.ExpressHappiness ()

10.All classes must have state

ALCOR

academy

11



First KATA In mob

01010
X
X [ X



Running




CSS Versicherung

@E Lesson 1

Refactoring

REFACTORING

- When we find duplication (Rule of@ )

- When we break Object Calisthenics rules.

ALCOR
academy

14



Refactoring

Refactoring guidelines

STAY IN GREEN WHILE REFACTORING

There is no reason why we should break any tests during refactoring.
It may be that we have tests, but they are coupled with implementation.

In this case, we start refactoring by the tests, decoupling the test from
the implementation.

Be strict about staying on green. We learned that in refactoring, it is more
effective to let go of something as soon as tests break, rather than
stubbornly trying to fix things to make tests pass.

@ Lesson 1 ALCOR

academy

CSS Versicherung 15



Refactoring

Refactoring guidelines

REFACTOR READABILITY BEFORE DESIGN

Small improvements in code readability can drastically
Improve code understandability.

Start with better names for variables, methods and classes.
The idea Is to express intent rather than implementation
details. We recommend Arlo Belshee’s approach for naming.

https://www.digdeeproots.com/articles/naming-as-a-process/

@ Lesson 1 ALCOR
. academy

CSS Versicherung 16



Refactoring
REFACTOR READABILITY BEFORE DESIGN

Format

—>,Format consistently and don’t force the reader to waste time fixing formatting.
Rename

—->Rename bad names, variables, arguments, instance variables, methods,
classes >Make abbreviations explicit.

Remove

—~>Delete unnecessary comments - Delete dead code. Don’'t make the reader
waste time trying to figure out code that is not in use anymore.

Extract

- Constants from magic numbers and strings - Conditionals.

Reorder

—~>Refine scope for improper variable scoping, and make sure variables are
declared close to where they are used.

@ Lesson 1 ALCOR
L academy

CSS Versicherung 17



Refactoring

THEN REFACTOR THE DESIGN (simple changes)

—> Extract private methods from deep conditionals.

- Extract smaller private methods from long methods
- Encapsulate cryptic code in private methods

- Return from methods as soon as possible.

- Encapsulate where we find missing encapsulation.

- Remove duplication.

@ Lesson 1 : FILCOR
s academy

CSS Versicherung

18



Code smells

https://sourcemaking.com/refactoring/smells


https://sourcemaking.com/refactoring/smells

CSS Versicherung

Code smells

Code smells

- A code smell is a surface indication, a symptom -
that something is not quite right in the system.

=> |t is not inherently bad on its own, but it's a clue
suggesting to investigate design potential problems.

-> Study the recurring types of smells is an effective
way to identify the issues and solve them as early
as possible, hence in the refactoring phase.

@ Lesson 2 ALCOR
academy

20



Code smells

Code smells
What can we do to go in the right direction? Follow the COF€ pl’lﬂCIples...

=> KISS (keep it simple, simian!)

- DRY (don'’t repeat yourself)

-> YAGNI (you aren’t gonna need it)

- SOLID

—> 4 RULES OF SIMPLE DESIGN

- BALANCED ABSTRACTION PRINCIPLE

- Tell don’t ask (Law of Demeter)

= LEAST ASTONISHMENT (WTF PRINCIPLE)

@ Lesson 2 ALCOR
1 academy
c Iy hear im J



Code smells

Code smells

What do we want to achieve following those principles?

-> Maximize Cohesion

¢ Cohesion is a metric telling how strongly related and coherent are
the responsibilities within the classes of an application

- Minimize Coupling
¢ Coupling is a metric for measuring the degree of interdependence
between the classes of an application

- Optimize Connascence
¢ Connascence is an alternative, extended taxonomy for OO,
extending both Coupling & Cohesion ideas

@ Lesson 2 _ NG ) FILCOR
. academy

CSS Versicherung



CSS Versicherung

Object Calisthenics => Code smells

Object Calisthenics and Code smells

|

Object calisthenics

Only one level of indentation per method

Don’t use the ELSE keyword

Wrap all primitives and strings

First class collections

One dot per line

Keep all entities small

No classes with more than two instance variables
No getters / setters / properties

All classes must have state, no static methods, no
utility classes

@ Lesson 2 TRAINING PROGE

Code smells

Long Method

Long Method / Duplicated Code

Primitive Obsession

Divergent Change / Large Class

Message Chains

Large Class / Long Method / Long Parameter List
Large Class

Feature Envy

Lazy Class / Middle man / Feature envy

AMME RLEOR

academy

23



SOLID++ principle

» Single Responsibility

* Open/Closed (open for extension/closed for modification)
* Liskov Substitution

* Interface Segregation

* Dependency Inversion

* +:Balanced Abstraction

* ++; Least Astonishment (a.k.a. WTF)




CSS Versicherung

Cohesion & Coupling

Cohesion and Coupling

Cohesion Coupling
says how strongly related and is the degree of interdependence
coherent are the responsibilities between modules (classes) of an
within modules (classes) of an application
application
hence hence
it should be MAXIMIZED it should be MINIMIZED

@ Lesson 5 TRA =1 E FILCOR
= academy

25



CSS Versicherung

Less
COUPLING

More
+

@ Lesson 5

Coupling

Method Coupling Premise

I 0 > void Method ()
]@ > volid Method(int x)
1 > int Method()
1+1 >» void Method (ClassA a)
1+1 > (ClassA Method()
2 > void Method(int x, int y)
2 > int Method(int x)

2+2 > void Method(ClassA a, ClassB b)
2+2 >» (ClassA Method(ClassB b)

ALCOR

academy

26



CSS Versicherung

FLYING

27



Test doubles

°  Test Doubles Taxonomy

<> Dummy: needed to complete the parameters’ list of a method,
but never used. Not common in well-designed systems.

-> Stub: responds to calls with some pre-programmed output.
They need to be specifically setup for every test. Fakes are hand
made stubs.

- Mock: set up with expectations of the calls they are expected to
receive. Provide a way of verify that a behaviour has been triggered
correctly. Spy is a hand made mock.

»Q-i
Lesson 1 TRAINING PROGRAMME ALCOR
academy

CSS Versicherung 28



CSS Versicherung

Emelie was born

29



Connascence

two or more elements

(fields, methods, classes, parameters, variables, etc.)

are MNNAS( if

a change in one element would
require also a change in the others

Lesson 2 ROGRA ALCOR
academy



CSS Versicherung

Strong

Weak

Lesson 2

Connascence
10 Menualwsk

— Dynamic
o—

Exwmn order

@ Position >

Algorithm > Seat
Meaning (Convention) > _ (dfsco?fe:rgble
. _ at compile time)
Ofme D £

TRAINING PROGRAMME ALCOR
academy

31



CSS Versicherung

Past vs Future

X
For the PAST we need METRICS and ANALITYCS For the FUTURE we need GUIDANCE via PRINCIPLES
(we know it and can change it) (we don’t know it, but have control)

SOLID
PRINCIPLES

COHESION

OBJECT
CALISTHENICS

FOUR
ELEMENTS
OF SIMPLE
DESIGN

Lesson 2 TRAINING PROGRAMME ALCOR

academy

DESIGN/CODE

SMELLS

32



The 4 Rules of Simple Design

The 4 Rules of Simple Design
° 1) CORRECT

Passes the Tests

2&3) EXPRESSIVE & NO REPETITIONS

Reveals Intention No Duplication

Priority

4) LEAST AMOUNT OF MODULES

Fewest Elements

Lesson 3 TRAINING PROGRAMME ALCOR
academy

CSS Versicherung



CSS Versicherung

Clean/Onion/Hexagonal Architecture
We begin from an external point of view...

Target Interface

Delivery
Infrastructure

Application
Services

Domain

Entities

Lesson 4

[Business
Logic]

[Application
Business Logic]

[Fagades and Adapters]

[External Systems, End Users]

...focusing on the users’ needs first

P@

L |

ALCOR
aca

demy

34



CSS Versicherung

Architecture
ARCHITECTURAL BOUNDARIES

Application
Serwce 1

I g -I'
i '! ) ] ‘
i = — \ 1
‘ | Domain Model ! — I
\ 1 1 —L Proxy
Controller 2 : - , ! I}
\ i ] B Entity 2 i /
\
\ \ Vi /
\ \ ~ / ,’
< - P—— Domain il ’
ication . 7 ’
b N pp' Service 2 ’ ’ v
~ N Service 2 vl o
e o ~ < + S s gl
}b}" TS ~ NS o 2 -t -
T -7 External Service

35



EZ2E Test

o TEST BOUNDARIES

-
— - —
- -——
—-— —
—_— —

f'-h---—p—ﬁ#:‘--—

- — —

- — S~

- - - -~
-7 - ™ o Data basa

Application Domain ]\\‘
Ser\nce i Service 1 J \ '
J— \

—

b '
\ % Controller 1 ] ," 44 = N \ Repository
\I’ ) I ,’ %Aggregate 1 ] - } ‘
I A ‘

RS : -
I =t |
1 [ p—————— = ! Proxy
"\ Controller 2 ] “ ,' /
\ / ,’
\ /
\ \ - / ,’
Yo 9 Pa——— Domain o %
ication . 7 ’
b b pp- Service 2 ’ ,
~ RS Service 2 J/’ o
\\.\ \\ * ’I ,’
-
TO/‘Q@(; h \‘.\ a” ,”
nr@ffae -_-‘ "'--..‘--.- —‘_,’ "-’f
e - i External Service

—
— -
—
— -
- o - mm =

CSS Versicherung 36



Integration Test
EST BOUNDARIES

- e T T TS e . — p s S “'\ —~

i S~ , X Database

P — \ e '

4 Application Domain N ‘\ ~— ‘

e . . \ v
P Service 1 ) o Service 1 \‘ vl

\\é Repository
\

I/

/ / - ~
-
/% Controller 1 } ,’ ? 8 “\\
4 / ,’ %Aggregate 1 }4.\._
I : - '

I ,'

i

1 |
\
\

\ %Controlier 2 | \

\ J l
\ \
\ \

\ \
he \\ Asiiag Domain ]
ication ;
he \\$ Spp. 5 ]7 Service 2 J J
~ ervice
\\ \\ + /,
~ -~ ”
~ \\ ’/
argerfn?e;’fac <ig “%__.- '._” \
sl = SESEE RN -

_____________ ~ External Servlcg

LN -

CSS Versicherung

37



Acceptance Test
TEST BOUNDARIES

‘_____.-—— ———
. ——
I Ly
_ —
P —
_ - -
_— = e
o=

- f""' sy . e
-_n--—--F _ -y ~ = TS
"'-; " \ S . Database
~ ~
E P T —
Serwce I Service 1 A I i N
~ \ N
> ’ %Reposi’cory]——)\—f
Aggregate 1

4 l
2 E Application
N Service 2
~

e
o
—
—

External Service

-
-
—
-
---——-__-—--

CSS Versicherung



CSS Versicherung

Unit Test
r'“_,)f UQU Jr& J

] ’
l% Controller 1 ,’
/ J’

I

I
I

1
\

I

‘ 1
\ %Controller 2
\ J

\ \

External Service

39



Outside-in mindset

We drive the

design of our

application’s
public interface

from an
Acceptance Test,
simulating user
interaction

Lesson 4 TRAINING PROGRAMME FILEOR
academy

CSS Versicherung 40

Target Interface

Delivery
Infrastructure

Business Logic]

[Fagades and Adapters]

[External Systems, End Users]



CSS Versicherung

Outside-in mindset

An OUTSIDE-IN mindset

Business-First view, using business functionality to drive the
internal growth of the system

Addresses YAGNI, since nothing would be developed if not
explicitly required

Minimizes entropy because it focuses on the publicinterface,
leading to the simplest way to communicate with the outside
world, hiding the complexity of the internals

Encourages expressivity, readability, clean code and simple
design because the focus of public interfaces gives an
immediate feedback on design and readability

ALCOR

academy

41



Conclusion

* | learned so much in the last 2.5 month !
In so many different ways: mob programming, using DIE efficiently, how to write good
code, good software design, tests, how to express my opinion,...

* | realized that you don’t have to be a genius to write good code.
When you respect a few simple rules/aspects, you can write good code.

* I'm now much more confident to write my own code instead of just
expanding/adapting/copying the existing code.

* I'm very excited to use my new knowledge more and more in my daily work.

CSS Versicherung

42



Thank you

- | want to thank you guys from ALCOR Academy for this amazing journey.
It was awesome, | learned so much and it was one of the best trainings I've ever had!

CSS Versicherung

43



