
SOLID
Dependency Inversion

Principle

A deeper look with examples

History

 Around since early 90s

 Postulated by Robert Martin (aka Uncle Bob)
1994 in an article called
Object Oriented Design Quality Metrics

Key points

 High-level modules should not depend on low-
level modules. Both should depend on
abstractions

 Abstractions should not depend on details.
Details should depend on abstractions

 Use abstraction between high-level and low-
level modules

 see the following samples

What is it all about

Database access

 Evolution in DB technologies
 JDBC

 ORM/Hibernate

 JPA

 Using these interfaces is violation of DIP
 DB Access on lower level than domain/business
 Complex interfaces
 They offer methods you will never use

Example 1 – DB access

Solution – Hide DB

 Domain related solution
 Use methods related to domain not to persistance

layer
 e.g.: add(Person), findAllPersons(name)

Example 1 – Solution

Repository

Client

Repository
Impl

JPA

Don't care

JDBC

DB

Flexibility is costly

 Apache log4j Logger
 > 60 methods
 Which one do I use
 Which ones does the team use
 What do I / the team log on what level
 To much ↔ not enough information
 Consistant use is hard

Example 2 – Flexibility is costly

Logger - Performance
 Logger logger = Logger.getLogger(getClass().getName();

String message = String.format("Read of user: %s", user.getName());
logger.log(Level.INFO, message);

 => String concatenation
 Logger logger = Logger.getLogger(getClass().getName();

if (logger.isLoggable(Level.INFO) {
 String message = String.format("Read of user: %s", user.getName());
 logger.log(Level.INFO, message);
}

 → decrease readability
→ discipline required
→ violates DRY, ...

Example 2 – performance

Solution - gateway

 => more consistency
 => reduced set of relevant method
 => less discipline required
 => No DRY

 MyLogger logger = SystemLoggerFactory.get(getClass());
logger.info("Read of user: %s", user.getName());

Example 2 – solution

MyLogger
5 methods

Client

MyLogger
Impl

org.slf4j.Logger
61 methods

Advantages using DIP

 tame unwieldy APIs
 reduce complexity of interfaces
 remove mismatch between abstraction

level of library and domain
 get better testing abilities
 reduce coupling

Advantages of DIP

References

 Object Oriented Design Quality Metrics
(1994 by Robert C. Martin)

 The Dependency Inversion Principle
(1996 by Robert C. Martin)

 DIP in the Wild
(2013 by Brett L. Schuchert)

References

https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://web.archive.org/web/20110714224327/http://www.objectmentor.com/resources/articles/dip.pdf
https://martinfowler.com/articles/dipInTheWild.html

Thanks for listening

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

