
SOLID
Dependency Inversion

Principle

A deeper look with examples

History

 Around since early 90s

 Postulated by Robert Martin (aka Uncle Bob)
1994 in an article called
Object Oriented Design Quality Metrics

Key points

 High-level modules should not depend on low-
level modules. Both should depend on
abstractions

 Abstractions should not depend on details.
Details should depend on abstractions

 Use abstraction between high-level and low-
level modules

 see the following samples

What is it all about

Database access

 Evolution in DB technologies
 JDBC

 ORM/Hibernate

 JPA

 Using these interfaces is violation of DIP
 DB Access on lower level than domain/business
 Complex interfaces
 They offer methods you will never use

Example 1 – DB access

Solution – Hide DB

 Domain related solution
 Use methods related to domain not to persistance

layer
 e.g.: add(Person), findAllPersons(name)

Example 1 – Solution

Repository

Client

Repository
Impl

JPA

Don't care

JDBC

DB

Flexibility is costly

 Apache log4j Logger
 > 60 methods
 Which one do I use
 Which ones does the team use
 What do I / the team log on what level
 To much ↔ not enough information
 Consistant use is hard

Example 2 – Flexibility is costly

Logger - Performance
 Logger logger = Logger.getLogger(getClass().getName();

String message = String.format("Read of user: %s", user.getName());
logger.log(Level.INFO, message);

 => String concatenation
 Logger logger = Logger.getLogger(getClass().getName();

if (logger.isLoggable(Level.INFO) {
 String message = String.format("Read of user: %s", user.getName());
 logger.log(Level.INFO, message);
}

 → decrease readability
→ discipline required
→ violates DRY, ...

Example 2 – performance

Solution - gateway

 => more consistency
 => reduced set of relevant method
 => less discipline required
 => No DRY

 MyLogger logger = SystemLoggerFactory.get(getClass());
logger.info("Read of user: %s", user.getName());

Example 2 – solution

MyLogger
5 methods

Client

MyLogger
Impl

org.slf4j.Logger
61 methods

Advantages using DIP

 tame unwieldy APIs
 reduce complexity of interfaces
 remove mismatch between abstraction

level of library and domain
 get better testing abilities
 reduce coupling

Advantages of DIP

References

 Object Oriented Design Quality Metrics
(1994 by Robert C. Martin)

 The Dependency Inversion Principle
(1996 by Robert C. Martin)

 DIP in the Wild
(2013 by Brett L. Schuchert)

References

https://linux.ime.usp.br/~joaomm/mac499/arquivos/referencias/oodmetrics.pdf
https://web.archive.org/web/20110714224327/http://www.objectmentor.com/resources/articles/dip.pdf
https://martinfowler.com/articles/dipInTheWild.html

Thanks for listening

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

