
SOLID
Dependency Inversion 

Principle

A deeper look with examples



History

 Around since early 90s

 Postulated by Robert Martin (aka Uncle Bob)
1994 in an article called
Object Oriented Design Quality Metrics



Key points

 High-level modules should not depend on low-
level modules. Both should depend on 
abstractions

 Abstractions should not depend on details. 
Details should depend on abstractions

 Use abstraction between high-level and low-
level modules

 see the following samples

What is it all about



Database access

 Evolution in DB technologies
 JDBC

 ORM/Hibernate

 JPA

 Using these interfaces is violation of DIP
 DB Access on lower level than domain/business
 Complex interfaces
 They offer methods you will never use

Example 1 – DB access



Solution – Hide DB

 Domain related solution
 Use methods related to domain not to persistance 

layer
 e.g.: add(Person), findAllPersons(name)

Example 1 – Solution

Repository

Client

Repository
Impl

JPA

Don't care

JDBC

DB



Flexibility is costly

 Apache log4j Logger
 > 60 methods
 Which one do I use
 Which ones does the team use
 What do I / the team log on what level
 To much ↔ not enough information
 Consistant use is hard

Example 2 – Flexibility is costly



Logger - Performance
 Logger logger = Logger.getLogger(getClass().getName();

String message = String.format("Read of user: %s", user.getName());
logger.log(Level.INFO, message);

 => String concatenation
 Logger logger = Logger.getLogger(getClass().getName(); 

if (logger.isLoggable(Level.INFO) {
   String message = String.format("Read of user: %s", user.getName());
   logger.log(Level.INFO, message);
}

 → decrease readability
→ discipline required
→ violates DRY, ...

Example 2 – performance



Solution - gateway

 => more consistency
 => reduced set of relevant method
 => less discipline required
 => No DRY

 MyLogger logger = SystemLoggerFactory.get(getClass()); 
logger.info("Read of user: %s", user.getName());

 

Example 2 – solution

MyLogger
5 methods

Client

MyLogger
Impl

org.slf4j.Logger
61 methods



Advantages using DIP

 tame unwieldy APIs 
 reduce complexity of interfaces
 remove mismatch between abstraction 

level of library and domain
 get better testing abilities
 reduce coupling

Advantages of DIP
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Thanks for listening
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