by Jeff Bay 2

https://unsplash.com/@lith?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/calisthenic?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Rules to get a better code design,
If applied correctly ;)

RULE 1: Only one level of indentation

=> helps method focuses on doing only one thing
=> reduce size of the method
=> enabling easier reuse

public Player getWinnerBad() {
Player previousPlayer = getPreviousPlayer();
if (this.board[winPositions[0][®8]].equals(previousPlayer.getMark().toString())) {
if (this.board[winPositions[8][1]].equals(previousPlayer.getMark().toString())) {
if (this.board[winPositions[8][2]].equals(previousPlayer.getMark().toString())) {
return previousPlayer;
i3
} public Player getWinnerGood() {
} Player previousPlayer = getPreviousPlayer();
if ((this.board[winPositions[0][@]].equals(previousPlayer.getMark().toString())
&& this.board[winPositions[0][1]].equals(previousPlayer.getMark().toString())
&& this.board[winPositions[0][2]].equals(previousPlayer.getMark().toString()))) {

return null;

return previousPlayer;

}

return null;

RULE 2: Don't use the ELSE keyword

=> focusing main execution lane
=> avoiding complex conditional cases

private void switchToNextPlayerBad() {
if (this.currentPlayer.getMark() == Symbol.X) {
this.currentPlayer = this.secondPlayer;
} else {
this.currentPlayer = this.firstPlayer;

}

private void switchToNextPlayerGood() {
this.currentPlayer = this.currentPlayer.getMark() == Symbol.X

? this.secondPlayer
: this.firstPlayer;

RULE 3: Wrap all primitives and strings in classes

=> expressing intents
=> proper namings e.g. domain specific with DDD

public class Player {
private final String name;

private final String playerName; private final Symbol mark;

private final String playerMark;

public Player(String name, Symbol mark){
this.mark = mark;

this.name = name;

}

public Symbol getMark(){
return this.mark;

: o4

RULE 4: First class collection

=> expressing intents
=> proper namings
—> filter and joins belong to a collection

public class Board { public class Board {
private String[] beard = new String[9]; private String[] board = new String[9];
private final int[]1[] winPositions = { private final WinPositions positions;

18} 1, 25, }

{3, 4, 5}, _ .

{6, 7, 8} public class WinPositions {

'l private final int[][] kombinations = {

{0, 1, 2},
{3, 4, 5},

{6, 7, 8}
b
I

RULE 5: One dot per line

—> tell object to do something instead of asking for internal representation
=> reduce the amount of knowledge

ticTacToe.getPlayer().setMark();|

ticTacToe.play(); ’

RULE 6: Don’t abbreviate

—> abbreviations can be confusing, so it's better to be clear

private final int[][] winPositions = {
{TL, TC, TR},
{ML, MC, MR},
{BL, BC, BR}

private final int[][] winPositions = {
{TOP_LEFT, TOP_CENTER, TOP_RIGHT},
{MIDDLE_LEFT, MIDDLE_CENTER, MIDDLE_RIGHT},
{BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT}

v

RULE 7: Keep all entities small

=> small classes tend to focus on doing just one thing

—> easier to reuse and easier to understand -
0 o private final static int TOP_LEFT = 8;
9 Clear |ntent|0n private final static int TOP_CENTER = 1;

private final static int TOP_RIGHT = 2;
private final static int MIDDLE_LEFT = 3;

public class GameBoard { private final static int MIDDLE_CENTER = 4;
private final static int TOP_LEFT = ©; private final static int MIDDLE_RIGHT = 5;
private; fiinal static int TOP.CENTER = 1; private final static int BOTTOM_LEFT = 6;

private final static int TOP_RIGHT = 2;
private final static int MIDDLE_LEFT = 3;
private final static int MIDDLE_CENTER = 4;
private final static int MIDDLE_RIGHT = 5;

private final static int BOTTON_LEFT = 6; private final int[][] positions = {

private final static int BOTTOM_CENTER = 7; {TOP_LEFT, TOP_CENTER, TOP_RIGHT},
private final static int BOTTOM_RIGHT = 8; R {MIDDLE_LEFT, MIDDLE_CENTER, MIDDLE_RIGHT},
{BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT}

private final static int BOTTOM_CENTER = 7;
private final static int BOTTOM_RIGHT = 8;

private String[] BG8apd = new String[9];

private final int[][] winPositions = {
{TOP_LEFT, TOP_CENTER, TOP_RIGHT}, bublic class Board §
{MIDDLE_LEFT, MIDDLE_CENTER, MIDDLE_RIGHT},

{BOTTOM_LEFT, BOTTOM_CENTER, BOTTOM_RIGHT} private String[] Boand = new String[9];
}: private final WinPositions positions;

} H

RULE 8: No class with more than 2 instance variables

—> the more instance variable the lower the cohesion within the class
=> less coupling and modularization

public class Board {
private final Player firstPlayer;
private final Player secondPlayer;
private Player currentPlayer;
private final WinPositions positions;

private String[] beard = new String[9];

public class Board {
private String[] beard = new String[9];

private final WinPositions positions;

RULE 9: No getter/ setter/ properties

=> instead of asking an object for its data, tell object what it should do
=> distinguish between data structures and objects, they have different
responsibilities

public class Player {
private final String name;
private final Symbol mark;

public

public

public

public

public

Player(String name, Symbol mark){...}

Symbol getMark() { return this.mark; }

void setMark(Symbol mark) { this.mark = mark }
Symbol getPlayer() { return this.mark; }

void setPlayer(Symbol mark) { this.mark = mark }

public class Player {
private final String name;
private final Symbol mark;

public Player(String name, Symbol mark) {
this.mark = mark;
this.name = name;

5

public void putNextMark() {
// put mark

. Y 4

RULE 10: All classes must have state

=> try creating classes that have clear responsibilities and require state
=> no static classes and methods

public class PlayerUtils { public class Player {
private final String name;
public static void putNextMark(r player) { private final Symbol mark;
// put mark »
} public Player(String name, Symbol mark) {

this.mark = mark;
this.name = name;

b

public void putNextMark() {
// put mark

. Y 4

Contains some clean code principles

Single responsibility principle
DRY

9
9
> KISS
9

