DartManager

TPP & OBJECT CALISTENICS

Statistik

3 Dart Avg
Highscore
Highest checkout
180

0 >= 140
>= 120
>= 100
Checkout %

G Win/Loss

Match

Sels Legs

History

» Ul driven design
g No clean abstractlon of dart logic

ts PropertyChangelistener

1nal Propertyll
final Map<Playe
inal List<Set> setHist

Final Config

» Logic all over the place
» Unreadable code

thrown)

dart)

* Do I understand my own code?

List<Dart> getCheckoutDarts(ECheckoutMode checkoutMode if (count
lint dartCount, int secore) for (int 1: i < dartCount: j+4) {
Integer i : NUMBERS) {

t count = dartCount -
1tch (checkoutMode) {

(count < i ounLe 5
remainingScore = score - 1 % EMultiplier.[Le.getFactor()

(remainingScore < 1) 4
s
List<Dart> darts
(darts.size() =
List<Dart> dartList =
Dart dart = null dartlist.addAll(darts)
CohRCHBUENAtE) dartlist.add(new Dart(i, EMultiplier.l
R ; dartList;

dart = getSingleDart(score);

(dart ==

{

|)
getTripleDart(score)

i I |

getbDoubleDart{score)

Collections.emptylist()
(dart != null) {
Arrays.asList(dart)

Refactoring?

O

The player size is set to 2.

A player should have a name.

Player 1 always starts.

The initial score for each player is 301.
Each player can throw 3 darts per turn.
The supported numbers are 0-20 & 25.

The numbers 1-20 support double and triple (e.g.
hitting 3 times triple 20 results in 180 = maximum
score per turn)

The number 25 supports double (single-bull & bull).

The first player to bring the score to 0 wins the
match (this is called checkout).

A checkout is only possible with a double (e.g.
remaining score is 32 and a double 16 is hit).

If a player overthrows (e.g. hitting 20 with 10
remaining) the player has no score for this turn.

* Only one entry point

» Logic is where it belongs
» Code is readable

» Code is tested

» Code follows rules

» Code is easily extendable

» Code can be used without
Ul

» Have a class which managers the players

S Players {

al List=<Players>

String

Player(String name) {

diie = Name

ing getName() {

agetNext(Playe
rrent

» Have a class which manages the score

Problems

O

» Step by step approach by defining rules
« TDD

Solve one problem at the time

» TPP
Only add complexity when needed

» Object calistenics
Refactor the right way

» Coverage at 100%

Match 100% (1/1)
1 Player 10
t Players

Current result looks very promising so...
Complete Kata
Create new Kata to add new features

Adapt project with every lesson learned
Create Ul in JavaFX

Thank you!

O

https://github.com/Teazl/DartManager
https://github.com/Teazl/DartManager
https://github.com/Teazl/DartManager2
https://github.com/Teazl/DartManager2

