
CODE RENOVATION
LEGACY CODE CAN SHINE AGAIN

Before you change code,
you must have tests in place.

But to put tests in place,
you have to change code.

So, what can we do about it?

Are we doomed?

Nope. But we should be extra careful

until we have tests in place.

We should perform minimal, safe

refactoring, changing as little code

as possible while retrofitting tests.

The paradox of Legacy Code

Adding tests on the existing code can be
challenging. That’s because it was not
written to be testable in the first place.

Retrofitting tests? Find the seam…

A seam is a place where you can
alter behaviour in your program
without editing in that place.

Michael Feathers

Most of the time the problem

is an hard coded dependency

like a database connection or

an external API.

…then break the dependency !

To test your code, you need to
break these dependencies in
the tests. Therefore, you need
to identify Seams.

Every seam has an enabling point, a
place where you can make the decision
to use one behaviour or another.

Michael Feathers

When a system goes into production,

it becomes its own specification.

The purpose of characterization

testing is to document the system’s

actual behaviour, regardless of

whether we think it’s right or not.

So we can have automated feedback

when we change existing behaviour.

Characterization tests

A characterization test is a test
that characterizes the actual
behaviour of some code.

Michael Feathers

We begins with two Refactoring Calisthenics

lessons, where we practice on advanced

techniques for changing the code staying in

green, breaking down dependencies and

essentially making untestable code testable,

using small tailored exercises.

Afterwards, in the Characterization &

Mutation Tests lesson, we learn how to

retrofit tests properly, identifying what the

actual correct behaviour of the system

should be.

6 hands-on lessons CODE RENOVATION

As usual in our trainings, we end the

course with a custom made exercise

inspired by a real-life scenario. That’s the

content of the two Refactoring Applied

lessons, where the group will learn how to

put under tests a “big ball of mud” with

external dependencies and obfuscated

code.

CODE RENOVATION

Refactoring
Calisthenics:
Introduction

Refactoring
Calisthenics:

Dependencies

Characterization
& Mutation

Tests

Advanced
Refactoring

Applied I

Advanced
Refactoring

Applied II

Learn by doing:
Presentation

Day

COURSE SYLLABUS

LESSON 1 LESSON 2 LESSON 3

LESSON 4 LESSON 5 LESSON 6

Interactive mob programming

driver

navigator

mob

ROLES

Navigator
The person listened by the
driver about what to do next.
He has to make the final
decisions and coordinate the
mob.

Driver
The person typing on the
keyboard. He should trust the
navigator and do what is
asked. He is not required to
think.

Mob
Everyone else in the room
wishing to contribute actively
to the task. They observe,
interact and discuss with the
navigator the way forward.

Facilitator (our coach)
Sits in the back, observe the
flow and jumps in when
necessary. This is the only role
that does not rotate.

facilitator

“A mob is a bus architecture
for human brains. We all
hear and see what we all

speak and show. It's super-
fast for learning.”

Tim Ottinger

Inspired by a proven learning model

NOVICE

BEGINNER

COMPETENT
PROFICIENT

EXPERT

Need
MOTIVATION

Need FOCUS

Need CRITICAL
THINKING

Need CONTINUOUS LEARNING
& SELF IMPROVEMENT Need TO BE

CREATIVE

• Intuition and tacit knowledge
• Vision of possible solutions
• Innovative approach
• Shape the context
• Rules not needed anymore
• Improves by DOING & TEACHING

• Understanding of options
• Internalisation of rules
• Context-based decisions
• Systems thinking
• Focus on important aspects
• Rules rarely needed
• Improves by DOING & TEACHING

• Conceptual understanding
• Context-aware decisions
• Can solve new problems
• Effective application of rules
• Improves by DOING & TEACHING• Narrow, disjointed view

• Decisions in standard situations
• Limited understanding of context
• Begins to make sense of rules
• Improves by LEARNING & DOING

• No understanding of context
• No problem solving
• Blindly apply the rules
• Improves by LEARNING & DOING

The Dreyfus Model

of Skills Acquisition

* Learn by Doing lessons are meant to improve
technical communication and presentation skills
to gradually move to teaching.

g

Building a collaborative mindset

Inattention
to

Results

Avoidance of
Accountability

Lack of Commitment

Fear of Conflict

Absence of Trust

In the “The Five Dysfunctions of a

Team”, Patrick Lencioni shows a

model to explain and resolve root

causes of teams’ dysfunctions.

Effective collaboration can

happen only in their absence.

When there’s trust, discussions and
accountability, the team is strong,

motivated and committed to
achieving results as a group.

The best and most high performing
teams are where individuals hold

one another to account.

Avoiding conflicts creates artificial
harmony. Teams stop committing to

decisions in fear of breaking harmony.

Healthy conflict is constructive, but
can’t happen without trust. All team
members to have a say in decisions.

Trust is necessary in a team. It can be
built showing vulnerability, sharing our

challenges and being authentic.

A digital copy of our book as manual

We are based in London, UK. We serve

customers worldwide. We help teams

foster a collaborative learning mindset,

so they keep improving everyday.

Contact us

MARCO
CONSOLARO

ALESSANDRO
DI GIOIA

LIVE
ONLINE

TRAINING

alcor.academyhttp://

info@alcor.academy

marco@alcor.academy

consolondon

alex@alcor.academy

parajao

