
How can it be so hard to 
do something so simple?



KISS and YAGNI

• Keep It Simple Stupid

• You Aren't Gonna Need It.

• Over engineering and under engineering



Good Naming

- Communicates to the reader

- Show intent

- Describe the context

- Doubles as good documentation



Bad naming

• Causes confusion

• Can lead to unnessesary comments

• Misleading

• Makes domain knowledge important



Code Smells

• Low reusability

• High cost of change

• Fixing a bug required a lot of changes several places

• Long long list

• Shotgun surgery

• Bloaters

• Primitive obsession



Solid++ Principles

• Single Responsibility

• Open/Close

• Liskov substitution

• Interface segregation

• Dependency inversion

• Balanced Abstraction

• Least astonishment (WTF)



Single Responsibility

• Readability for obvious reasons

• Testability -> small modules are easier to test

• Reusability -> Easy to read and tested, therefore easy to reuse

• Maintainability -> Easy to maintain and easier handovers



Open/Closed principle

• Should be open for extension

• Should be closed for modification

• Add new features by adding new code, not modifying old code



Liskov substitution 

• Substitute a class with any of its subclasses without breaking the system

• Implementations of the same interface should never give different results



Interface Segregation

• Clients should not depend on methods they don’t use

• Developers favours thin, focused interfaces



Dependency inversion

• High-level and low-level modules should depend on abstractions

• Abstractions should not depend on details. Details should depend on abstractions



Conclusions

• Naming is key

• Code smells should always be in mind. Especially when doing code reviews

• Solid principles makes code cleaner, more flexible and easier to change.

• Modules should not be thightly coupled.

• Modules should be highly cohesive to work towards the same goal.



Questions?



Sources

• https://www.c-sharpcorner.com/article/solid-principles-in-c-sharp-
liskov-substitution-principle/

• https://sourcemaking.com/refactoring/smells

• https://dotnettutorials.net/lesson/interface-segregation-principle/

• https://code-maze.com/open-closed-principle/

https://www.c-sharpcorner.com/article/solid-principles-in-c-sharp-liskov-substitution-principle/
https://sourcemaking.com/refactoring/smells
https://dotnettutorials.net/lesson/interface-segregation-principle/


Thank you!

vetle.horpestad

Vetle Horpestad

vetle.horpestad@bouvet.no


