How can it be so hard to
do something so simple?

KISS and YAGNI

* Keep It Simple Stupid
* You Aren't Gonna Need It.

* Over engineering and under engineering

Good Naming

Communicates to the reader

Show intent

Describe the context

Doubles as good documentation

Bad naming

Causes confusion
Can lead to unnessesary comments
Misleading

Makes domain knowledge important

Code Smells

* Low reusability

e High cost of change

* Fixing a bug required a lot of changes several places
* Long long list

e Shotgun surgery

* Bloaters

* Primitive obsession

Solid++ Principles

* Single Responsibility

e Open/Close

* Liskov substitution

* Interface segregation

* Dependency inversion

* Balanced Abstraction

e Least astonishment (WTF)

Single Responsibility

Readability for obvious reasons

Testability -> small modules are easier to test

Reusability -> Easy to read and tested, therefore easy to reuse

Maintainability -> Easy to maintain and easier handovers

Open/Closed principle

e Should be open for extension
* Should be closed for modification

* Add new features by adding new code, not modifying old code

Liskov substitution

e Substitute a class with any of its subclasses without breaking the system

* Implementations of the same interface should never give different results

Interface Segregation

* Clients should not depend on methods they don’t use

* Developers favours thin, focused interfaces

public interface IPrinterTasks
{

void Print(string PrintContent);

void Scan(string ScanContent);

void Fax(string FaxContent);

void PrintDuplex(string PrintDuplexContent);
}

Forcing a class to provide the body of an interface method
means violating the Interface Segregation Principle

class HPLaserJetPrinter : I erTasks class LigquidInkjetPrinter : IPrinterTasks
{ {
public void Print(string PrintContent) public void Print(string PrintContent)
{ {
Console.WriteLine("Print Done"); Console.WriteLine("Print Done");
} }
public void Scan(string ScanContent) public void Scan(string ScanContent)
{
Console.WriteLine("Scan content"); Console.WriteLine("Scan content™);
} }
public void Fax(string FaxContent) public void Fax(string FaxContent)
{ {
Console.WriteLine("Fax content™); throw new NotImplement ception();
} }
public void PrintDuplex(string PrintDuplexContent) public void PrintDuplex(string PrintDuplexContent
Console.WriteLine("Print Duplex content™); throw new N:
} }

A4

public interface IPrinterTasks

void Print(string PrintContent);
void Scan(string ScanContent);

interface IFaxTasks

void Fax(string content);

interface IPrintDuplexTasks

void PrintDuplex(string content);

Splitting a big interface into smaller ones

public class HPLaserJetPrinter : IPrinterTasks, IFaxTasks,

{

IPrintDuplexTasks
public veid Print(string PrintContent)|...
public void Scan(string ScanContent)|...
public void Fax(string FaxContent)...

public void PrintDuplex(string PrintDuplexContent)|...|

Class implementing all the three interfaces means this class
wants all the four services

class LiquidInkjetPrinter : IPrinterTasks

{

public void Print(string PrintContent).. |

public void Scan(string ScanContent).. |

This class wants only Print and Scan service so
implementing only the IPrinterTasks interface

Dependency inversion

* High-level and low-level modules should depend on abstractions

* Abstractions should not depend on details. Details should depend on abstractions

Conclusions

Naming is key

Code smells should always be in mind. Especially when doing code reviews

Solid principles makes code cleaner, more flexible and easier to change.

Modules should not be thightly coupled.

Modules should be highly cohesive to work towards the same goal.

Questions?

Sources

* https://www.c-sharpcorner.com/article/solid-principles-in-c-sharp-
iskov-substitution-principle/

* https://sourcemaking.com/refactoring/smells

* https://dotnettutorials.net/lesson/interface-segregation-principle/

* https://code-maze.com/open-closed-principle/

https://www.c-sharpcorner.com/article/solid-principles-in-c-sharp-liskov-substitution-principle/
https://sourcemaking.com/refactoring/smells
https://dotnettutorials.net/lesson/interface-segregation-principle/

Thank youl!

O vetle.horpestad

GitHub

m Vetle Horpestad
B vetle.horpestad@bouvet.no

