
TDD: TRYING TO WALK

0 1 . 1 0 . 2 0 2 1

ATTEMPT TO IMPLEMENT THE “BOWLING KATA”

2

Bowling Game Scoring
Write a program to calculate the score of a Ten-Pin Bowling

Input: a string representing a bowling game score

Output: the score as integer

Examples:

Scoring Rules (short):
• Each game consists of ten “frames” with up to two tries
• If the first ball in a frame knocks down all ten pins it is

called a “strike” and the frame is over (“X”)
• Score is ten plus number of pins in next two tries

• If the second ball in a frame knocks down all ten pins it
is called a “spare” (“/”)
• Score is ten plus number of pin in next try

• If not all pins are knocked down in a frame the score is
the number of pins down

• Bonus tries when last frame ends with “strike” or
“spare” regarding to the scoring rules of “strike” and
“spare”

START WITH A TEST
What do we want to test?

 We want to test behaviour

 BowlingGameScoreCalculatorShould…

 …calculateScoreFromGivenGame

 Assert that the calculated score is the expected
from the example(s)

What shall the software do?

 Calculate the score for a given game

 The behaviour is the API

 1 public interface with input «game» as String
and «score» as Integer

 We can make one parameterized test, because
for every example the score calculating rules stay
the same

 We did not write any code but looking at the
requirements we test any behaviour the
program should have

3

WHAT DO WE ACHIEVE FROM THE TEST?

4

• Clear “given”, “when”, “then” and it is readable like simple text:
• BowlingGameScoreCalculatorShould…

• …calculateScoreFromGivenGame
• Given a played game
• When called to calculate
• Then return the (correct) score

• When the implementation changes…
• Example: the rules of calculating the score change

 The test does not have to change!
 If the API does not change, the caller does not change

• Example: using an extern library instead of our code
 Just the call to production code and maybe the input

changes
 The structure of the test does not have to change!

CHECKING FOR TEST SMELLS

• Not testing anything -> testing the score calculation

• Test too many things at once -> only testing the score calculation

• Too many assertions -> only one

• Assertions mixed with actions -> only one action seperated from one assertion

• Testing or containing irrelevant information -> only one object is created and one method is called

• Conditional test logic -> no conditions in test

• Test too long -> just one line for given, when, then

• Excessive setup -> no setup necessary but the instance creation for calling the
calculator

HOW TO GO ON?

Alcor Training: Lesson1-Introduction to Classic TDD

WRITE A RED TEST

Introduce first example

Make the test fail for the right reason

 Create BowlingGameScoreCalculator and
method calculateScore

 Return 0 to make it fail for the right reason (no
implementation)

7

MAKE THE TEST GREEN

Write just enough code to make the test green

 Fake implementation

 Obvious implementation

 Split the input String at the “|”

 Count the X

 Because we know every one of the 10 frames will
be scored 30, we can add 30 for every frame

 Due to the delimiter “|” the extra rolls are
ignored

8

REFACTORING

OBJECT CALISTHENICS RULES TRANSFORMATION PRIORITY PREMISE

• Wrap all primitives and Strings
 “X” (and later “/” or “-”) can be wrapped in Enum

or Class
 String-Array “frames” to Collection of type

“Frame”
 Wrap Delimiter “|” and “||” for the extra tries?

• Only one level of indentation
 If-condition can move to “Frame”

 We get a method call for the condition,
ok? (-> TPP)

• When moving condition to “Frame”-class
 Condition: 6; Function: 12

 Does this make it worse?

TRIANGULATION INSTEAD OF
REFACTORING

This is what can happen after triangulate the next 2
examples without refactoring :D

 Object Calesthenics Rules

 Don’t use ELSE keyword

 TPP:

 2 conditions(6) in loop(10) and a nested loop(10)
in ELSE with another condition(6) in it

 Can’t even calculate the TPP score easily
@.@

 Refactor it!!!

10

AFTER REFACTORING

“Frames” is parsing the String input

 Calculator does not parse, just calculate final
score

“Frame” has the responsibility to calculate the
score for every single frame

 Logic of what is “strike” and so on is capsuled in
“Frame”

 Frame-Logic is in Frame-Domain

Actual number of frames played (10) does not
have to be known

 works by rule change (e.g. 15 frames per game)

Logic of additional tries (strikes, spares) is capsuled
in “Frame “

 “Frame” can be replaced by any other unit

 Test does not care

11

QUESTIONS (FROM ME)

Is the TPP score too high?
 Scalar (int score) -> 4
 Function (buildFrames, incrementScore) -> 24
 Mutation (score = …) -> 13
 Loop (Frame frames : frames) -> 10

 Does this multiply the score of function and mutation?

MERCI

Looking forward to next module
And

Have a great weekend!

Let’s practice and become competent in what we are doing!

