
Jürg Weilenmann, 24.06.2021

Sins of mocking
How to mock correctly?

• Had to add some ‚non functional‘ extension to existing code

• code base +10 years

• large class

• no tests and not testable (at least for me)

Problem

• extract the part to change into a separate class with ‚low-risk‘ changes to
the existing code

• write a test

• mock all ‚external‘ services

• add the new functionality

Plan

int largeMethod(int operation){ // in a large class

 switch(operation){
 case 0:
 return doSomething0("some data");
 //
 case 999:
 return doSomething999("some data");
 }
}

Actual Class

int largeMethod(int operation){
 switch(operation){
 case 0:
 return new DoSomething0Command().execute("some data");
 //
}

class DoSomething0Command {
public int execute(String data) {

 createService().callIt(data);
 return 0;
 }

 private ExternalService createService() {
 return ExternalServiceFactory.createService();
 }
}

Extracting command

void test(){
 DoSomething0Command command = new DoSomething0Command();

 int result = command.execute("some data");

 assertEquals(0, result);
}

• failed for wrong reason

• ExternalServiceFactory.createService() with JEE lookup magic

• had to mock it

First Test

void test(){
 ExternalService externalService = createMock();
 DoSomething0Command command = new DoSomething0Command(){
 @Override
 ExternalService createService() {
 return externalService;
 }
 };

 int result = command.execute("some data");

 assertEquals(0, result);
}

Option 1 (my favourite ;-) , seen quite often in our legacy code)

• changing visibility of createService() just for testing

• not testing the real class but something different

• have to know what method to override

void test(){
 ExternalService externalServiceMock = createMock();
 DoSomething0Command command = new DoSomething0Command()

 int result = command.execute("some data“,
 externalServiceMock);

 assertEquals(0, result);
}

Option 2: passing mock into function call

• the parameter gives me a hint what to mock

• changes signature of the command method and probably each command needs different

services

• service is now created at an earlier phase -> not exactly what we had before, might be a

problem when JEE looking up the bean

void test(){
 ExternalService externalService = createMock();
 DoSomething0Command command = new
 DoSomething0Command(externalService)
 int result = command.execute("some data");

 assertEquals(0, result);
}

Option 3: create an additional constructor for testing

• code used only for testing

• service class must handle both cases

public class DoSomething0Command {
 private final Supplier<ExternalService> externalServiceSupplier;

 public DoSomething0Command() {
 this(DoSomething0Command::createService);
 }

 DoSomething0Command(Supplier<ExternalService> externalServiceSupplier) {
 this.externalServiceSupplier = externalServiceSupplier;
 }

 public int execute(String data) {
 externalServiceSupplier.get().callIt(data);
 return 0;
 }

 private static ExternalService createService() {
 return ExternalServiceFactory.createService();
 }

Option 4: create an additional constructor passing in a factory method

• same code for test and production, but still a constructor that is used only for testing

• no change in the interface

public class DoSomething0Command {
 private final Instance<ExternalService> externalService;

 @Inject
 public DoSomething0Command2(Instance<ExternalService> externalService) {
 this.externalService = externalService;
 }

 public int execute(String data) {
 externalService.get().callIt(data);
 return 0;
 }

Option 5: CDI way

• no special code for testing anymore

• creating the factory is delegated to a producer

• looks good, but our legacy code is not managed by CDI

Other Options

• use reflection to override internals (but needs knowledge of the internals)

• …

Let’s go ‚flying‘ to learn how to do it right

Merçi for listening

Contact:

Mail: juerg.weilenmann@css.ch

Twitter: -

Facebook: -

LinkedIn: -

Instagram: -

WhatsApp: -

Git: -

BeachBar: 18:00 - 20:00

mailto:juerg.weilenmann@css.ch

