
pawel.hajda@css.ch

Code renovation training
Takeaways, lessons learned and thoughts...

Approaching Legacy Code Refactoring

Power of MOB

Practice, practice, practice!

TDD+M

Approaching Legacy Code Refactoring

1. Identify code smells

2. Break dependencies

3. Put approval and mutation tests in place

4. Refactor and Unit Tests

Approaching Legacy Code Refactoring
1. Identify code smells

• Legacy code smells cheat sheet

• Categorise: application-level, class-level and
method-level smells

• Rank: criticality level

• Static code analysis

Approaching Legacy Code Refactoring
2. Break dependencies

• IDE driven & provable refactorings

• “Subclass and Override” is tempting to use but do not forget other techniques
Inheriting

Subclass and override method

Extract implementer

Extract interface

Introduce static setter

Push down dependencies
Overriding

Extract and override call

Extract and override getter

Static

Introduce instance delegator

Injection

Parametrize constructor

Approaching Legacy Code Refactoring
3. Put approval and mutation tests in place

• Safety net, locking down the current
behaviour, combinatorial tests give results
with high test coverage

• Enable mutation tests to ensure if each
statement is meaningfully tested and to test
critical boundary cases

Approaching Legacy Code Refactoring
4. Refactor and Unit Tests

• Having first tests in place, cover the code
with unit tests and refactor it. 
Go down in the testing pyramid

Power of MOB

• Gather ideas

• Ongoing review

• Everyone on the same baseline

• Effective decisions (consent instead of
consensus)

• Make sure to have an intention

Work effectively

Practice, practice, practice!

• Kata’s

• Master your IDE  
(shortcuts, live templates, etc.)

• Some of the refactoring patterns
could be applied directly in your IDE 
 
(f.e. Peel & Slice technique can be
completely IDE-Driven with IntelliJ) 

Practice, practice, practice!
Breaking dependencies with Extract Interface Pattern (IntelliJ)

Extract Method

Introduce parameter in  
extracted method (if necessary)

Create Adapter Class

Move instance method

Extract interface

Adapter and Interface do not exist yet

Extract Method

Introduce parameter in  
extracted method (if necessary)

Move instance method

Putting next methods to interface

Push members down 
(with “keep abstract” option!)

TDD+M

Test‑driven development with mutation testing – an experimental study 
https://www.researchgate.net/publication/346533953_Test-driven_development_with_mutation_testing_-_an_experimental_study

The experiment showed that adding mutation into the TDD process allows

the developers to provide better, stronger tests and to write a better quality code 

“The novelty of this paper, comparing to the studies previously cited, is that we do not focus
on the coverage criteria themselves, but on the role of mutation in the TDD process:
we investigate if mutation testing improves the quality of code developed within the TDD approach”

 

Test-driven development with mutation testing

https://www.researchgate.net/publication/346533953_Test-driven_development_with_mutation_testing_-_an_experimental_study

TDD+M

• Sufficiency

• Coverage

• Semantic Stability

 

Classic TDD and questions about:

TDD+M

• Mutation tests are inserted
between test execution and code
refactoring

• When the tests fail during the
mutation phase, then we know
that test cases are weak and do
not detect defects

• Is it worth it?

 

TDD with mutation tests

References
• https://alcor.academy

• https://www.researchgate.net/publication/346533953_Test-driven_development_with_mutation_testing_-_an_experimental_study

• https://blog.cleancoder.com/uncle-bob/2016/06/10/MutationTesting.html

Questions?

Thank you for your attention

https://www.researchgate.net/publication/346533953_Test-driven_development_with_mutation_testing_-_an_experimental_study
https://blog.cleancoder.com/uncle-bob/2016/06/10/MutationTesting.html

