
CSS Versicherung

Luzern, 29. April 2021

Marco Birrer

ALCOR Academy Training

2

S.O.L.I.D – Single Responsibility

“A class should have only one reason to change”

3

S.O.L.I.D – Single Responsibility

The classes you write, should not be a swiss army knife.

They should do one thing, and to that one thing well.

4

S.O.L.I.D – Single Responsibility

 Testing – more easy to test

 Lower Coupling – less dependencies

 Organization – smaller is more readable / understandable

5

S.O.L.I.D – Single Responsibility

CancelManager

markPolicyCanceled

createConsequeces

save

ConsequencesManager

create

ProcessManager

save

CancelManager

markPolicy

Split

Large Class

Divergend Change

6

S.O.L.I.D – Open / Closed Principle

“Software components should be open for

extension, but closed for modification”

7

S.O.L.I.D – Open / Closed Principle

Open Chest Surgery Is Not Needed

When Putting On A Coat!

8

S.O.L.I.D – Open / Closed Principle

Rover

switch(movement) {

case "MoveForward": …

case "RotateRight": …

…

}

<Interface>

Command

+ execute()

Switch

Primitive Obsession

Shotgun Surgery

MoveForward RotateRight

Rover

+ move(command)

command.execute()

Pattern
......

9

S.O.L.I.D – Liskov substitution principle

“Derived classes should be able to substitute

their base classes without the behavior of your

code changing.”

10

S.O.L.I.D – Liskov substitution principle

If it looks like a duck and quacks like a duck but it needs

batteries you probably have the wrong abstraction.

11

S.O.L.I.D – Liskov substitution principle

Refused Bequest

<Interface>

Employee

+ startMob()

Developer

void startMob() {

….

}

Manager

void startMob() {

throw new Error()

}

MobSession

employee. startMob()

<Interface>

Mobable

+ startMob()

Better

Abstraction

12

S.O.L.I.D – Interface segregation principle

“Clients should not be forced to depend upon

interfaces that they do not use.”

13

S.O.L.I.D – Interface segregation principle

Where to Plug in here?

14

S.O.L.I.D – Interface segregation principle

Vehicle

setPrice

setColor

forward

backward

fly

Movable

forward

backward

Flyable

fly

Vehicle

setPrice

setColor

Split

Large Class

Refused Bequest

Alternative Classes differnt Interfaces

Duplicated Code

<Vehicle>

Car

setPrice

setColor

forward

backward

fly

<Vehicle, Moveable>

Car

setPrice

setColor

forward

backward

15

S.O.L.I.D – Dependency Inversion Principle

“High level modules should not depend on low

level modules they should both depend on

abstractions.”

“Abstractions should not depend on details.

Details should depend on abstractions."

16

S.O.L.I.D – Dependency Inversion Principle

Would you solder a lamp

directly to the electrical wiring

in a wall?

17

S.O.L.I.D – Dependency Inversion Principle

Rover

switch(movement) {

case F: …

case L: …

…

}

<Interface>

Command

+ execute()

no smell directly ...

MoveForward RotateRight ...

Rover

+ move(command)

command.execute()

Depending on Interface

18

References

 https://dzone.com

 https://springframework.guru/principles-of-object-oriented-design

 https://www.baeldung.com/solid-principles

 https://alcor.acedemy

 https://miro.medium.com

https://dzone.com/
https://alcor.acedemy/

19

THANK YOU
FOR

YOUR ATTENTION

