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S.O.L.I.D – Single Responsibility

“A class should have only one reason to change”
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S.O.L.I.D – Single Responsibility

The classes you write, should not be a swiss army knife. 

They should do one thing, and to that one thing well.
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S.O.L.I.D – Single Responsibility

 Testing – more easy to test

 Lower Coupling – less dependencies

 Organization – smaller is more readable / understandable
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S.O.L.I.D – Single Responsibility

CancelManager

markPolicyCanceled

createConsequeces

save

ConsequencesManager

create

ProcessManager

save

CancelManager

markPolicy

Split

Large Class

Divergend Change
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S.O.L.I.D – Open / Closed Principle

“Software components should be open for 

extension, but closed for modification”
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S.O.L.I.D – Open / Closed Principle

Open Chest Surgery Is Not Needed 

When Putting On A Coat!
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S.O.L.I.D – Open / Closed Principle

Rover

switch(movement) {

case "MoveForward": …

case "RotateRight": …

…

}

<Interface>

Command

+ execute()

Switch

Primitive Obsession

Shotgun Surgery

MoveForward RotateRight

Rover

+ move(command)

command.execute()

Pattern
......
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S.O.L.I.D – Liskov substitution principle

“Derived classes should be able to substitute 

their base classes without the behavior of your 

code changing.”
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S.O.L.I.D – Liskov substitution principle

If it looks like a duck and quacks like a duck but it needs 

batteries you probably have the wrong abstraction.
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S.O.L.I.D – Liskov substitution principle

Refused Bequest

<Interface>

Employee

+ startMob()

Developer

void startMob() {

….

}

Manager

void startMob() {

throw new Error()

}

MobSession

employee. startMob()

<Interface>

Mobable

+ startMob()

Better

Abstraction
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S.O.L.I.D – Interface segregation principle

“Clients should not be forced to depend upon 

interfaces that they do not use.”
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S.O.L.I.D – Interface segregation principle

Where to Plug in here?
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S.O.L.I.D – Interface segregation principle

Vehicle

setPrice

setColor

forward

backward

fly

Movable

forward

backward

Flyable

fly

Vehicle

setPrice

setColor

Split

Large Class

Refused Bequest

Alternative Classes differnt Interfaces

Duplicated Code

<Vehicle>

Car

setPrice

setColor

forward

backward

fly

<Vehicle, Moveable>

Car

setPrice

setColor

forward

backward
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S.O.L.I.D – Dependency Inversion Principle

“High level modules should not depend on low 

level modules they should both depend on 

abstractions.”

“Abstractions should not depend on details. 

Details should depend on abstractions."
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S.O.L.I.D – Dependency Inversion Principle

Would you solder a lamp 

directly to the electrical wiring 

in a wall?
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S.O.L.I.D – Dependency Inversion Principle

Rover

switch(movement) {

case F: …

case L: …

…

}

<Interface>

Command

+ execute()

no smell directly ...

MoveForward RotateRight ...

Rover

+ move(command)

command.execute()

Depending on Interface
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THANK YOU 
FOR

YOUR ATTENTION


