
CSS Versicherung

TDD in Web Applications
examples with framework Angular

Luzern, 31. März 2021

Marco Birrer

ALCOR Academy Training

2

• easy to test

• can have state or not

• should contain all business logic

• tests are very useful here and possible test driven

Angular Services

3

Angular Services example: fail, pass, refactor

@Injectable()

export class FunnyAlcorGroupService {

public getMembersCount(): number {

return -1;

}

@Injectable()

export class FunnyAlcorGroupService {

……….

public addMember(member: AlcorMember): void {

}

describe(should return no member inital ', () => {

const service = new FunnyAlcorGroupService();

const membersCount = service.getMembersCount();

expect(membersCount).toBe(0);

});

describe(should return one member after adding one ', () => {

const service = new FunnyAlcorGroupService();

service.addMember(new AlcorMember(‘Alessandro’));

const membersCount = service.getMembersCount();

expect(service.getMembersCount()).toBe(1);

});

@Injectable()

export class FunnyAlcorGroupService {

public getMembersCount(): number {

return 0;

}

describe(should return no member inital ', () => {

const service = new FunnyAlcorGroupService();

const membersCount = service.getMembersCount();

expect(membersCount).toBe(0);

});

4

Angular Services HTTP calls

• testing http service important too

• test call was made

• test error handled

const funnyAlcorMembers = [{ name: ‘tamas’ } as AlcorMember, { name: ‘kay’ } as AlcorMember]

describe(FunnyAlcorGroupService ', () => {

const testee : FunnyAlcorGroupService;

const http: HttpTestingControler // from angular testing package

beforeEach(() => {

TestBed.configureTestingModule({

imports: [HttpClientTestingModule],

providers: [FunnyAlcorGroupService]

});

testee = TestBed.get(FunnyAlcorGroupService);

http = TestBed.get(HttpTestingController);

});

// some tests testing calls might use

const request = http.expectOne(‘/alcor/members/’)

expect(request.request.method).toEqual(‘GET’);

http.flush(funnyAlcorMembers);

http.flush(‘ERROR’, { status: 500, statusText: ‘Internal Server Error’ } // case error

http.verify();

});

5

• Should not cotain business logic

• Need little mor Setup (module where component is placed)

• Services can be mocked (spy)

Angular Components

6

Angular Components Nested GUI

XMy Application

7

Angular Component: mock nested components

Create a mock component with

same selector and need @Input /

@Output OR just ignore any error if

tag not found with schemas.

@Directive({

selector: ‘alcor-member'

})

class MockTaskDirective {

@Input(‘member’) public member: AlcorMember;

@Output(‘stopbedriver’) public stopBeDriverEmitter = new EventEmitter<void>();

}

beforeEach(() => {

TestBed.configureTestingModule({

declarations: [TaskListComponent, MockTaskDirective], or

schemas: [CUSTOM_ELEMENTS_SCHEMA],

providers: [

{ provide: TasksService, useClass: MockService }

]

});

fixture = TestBed.createComponent(RootComponent);

cmp = fixture.componentInstance;

});

<div>

…………………………

<div *ngFor="let member of (alcorMembers$ | async)">

<alcor-member

[member]="member" (stopbedriver)="stopBeDriver($event)">

</alcor-member>

</div>

…………………..

we want mock away <alcor-member>

8

My Question: Why do you not practice TDD in UI?

• Is it worth write TDD for styling?

• Does UI change to much after development by Customer review?

• Should UI have much business logic at all?

• Is Performance to bad for TDD excample Cypress?

• We always need mock whole GUI backend without mocking part?

9

Thank for your attention

