OBJECT CALISTHENICS

Practices and learnings from the course

Mats Tyldum

Content

m What is Object Calisthenics?
m Examples from the Tic Tac Toe kata
m Learnings and reflections

What is Object Calisthenics?

m A set of nine simple rules

m Focused on writing more testable, maintainable,
readable and comprehensive code

m Easy to understand

m Naturally change how you write code

Rules

Only one level of indentation per method

Do not use the ELSE keyword

Wrap all primitives and strings

First class collections

One dot per line

Do not abbreviate

Keep all entities small

No classes with more than two instance variables

RO DI Ol - CORIR

No getters or setters

Tic Tac Toe example

m “Write the engine that would allow two people
to play Tic Tac Toe”

m Implementation from course before and after Object
Calisthenic lesson completed

m lllustrate 3 examples

m Link to GitHub for full implementation at last slide

Wrap all primitives and strings

m First implementation used . . s
_ private string _currentPlayer = "X";
strings as players O and X

public enum Player

m Improved clarity and less ;

prone to error by using None
Enum Player instead X,
0,
}

private Player _currentPlayer = Player.X;

Do not use the ELSE keyword

Previous New

public void PlaceMarkerAt(int square) public void PlaceMarker(Square square)
1 1
if (!string.IsNullOrWhiteSpace(_playedSquares[square])) if(_beard.IsSquarePlayed(square))
{ return;
return;
} _board.PlaceMarker({square, currentPlayer);
_playedSquares[square] = _currentPlayer; AlternatePlayer();
b
if (currentPlayer == "X") : :
[- private void AlternatePlayer()
1 1 {
_currentPlayer = "07; if { _currentPlayer == Player.X)
h {
else _currentPlayer = Player.0;
{ return;
_currentPlayer = "X"; I
1 _currentPlayer = Player.X;

Keep all entities small

m [ic Tac Toe class
m [ried to do my best to keep it simple and elegant
m Surprised of the level of improvement in the second attempt

m Example also provides overall look of how other Object
Calisthenic rules improved the code

oW s L %]

|

e

(LN [RN |

b ek

=

P R Y R R N
W 2a

I

o5

=

{1 IR - S W S T S I %

£

namespace src

{ 48 private string GetWinnerDiagonally()
public class TicTacToe A8 if (_playedSquares[@] != null 2R - - -
{ (o] - st 1 FIPSE IMpPlementation
private string _currentPlayer = "X"; 5@ _playedsquares[4] == _playedSquares[8])
private string[] _playedSquares = new string[9]; 51 {
52 return _playedSquares[@];
53 }
public string GetCurrentPlayer() 54
{ 55 if (_playedSquares[2] != null &8
return _currentPlayer; 56 _playedSquares[2] == _playedSquares[4] &8
1 57 _playedSquares[4] == _playedSquares[6])
58 {
59 return _playedSquares[2];
public void PlaceMarkerAt({int square) 68 1
i 61 return null;
if {lstring.IsNullOrkhiteSpace(playedSquares[square]))] &2 I
1 63
return;
} 64 private string GetWinnerVertical()
55 {
playedSquares[square] = _currentPlayer: BE for (var columnStartIndex = 8; columnStartIndex < 3; columnStartIndexit)
- ey E I_:__ {
. e 68 if (_playedSquares[columnStartIndex] != null &R
f tP1 == "X ?
; (urventidayer) 69 _playedSquares[columnStartIndex] == _playedSquares[columnStartIndex + 3] &8
T 1] _playedsquares[columnStartIndex + 3] == _playedSquares[columnStartIndex + 6])
e - ¥ 71 {
}I 72 return _playedSquares[columnStartIndex];
else o
{ " !
} =S ERRE ;; ieturn null;
7 1
} S
78 private string GetWinnerHorizontal()
public string GetWinner() 19 {
i ae for {var rowStartIndex = 8; rowStartIndex < 9; rowStartIndex += 3)
var horizontalWinner = GetWinnerHorizontal(); 81 {
if (horizontalWinner != null) return horizontalWinner; B2 if { playedSquares[rowStartIndex] != null R&
] _playedSquares[rowStartIndex] == _playedSquares[rowStartIndex + 1] &8
var verticalWinner = GetWinnerVertical(); g4 _playedSquares[rowStartIndex + 1] == _playedSquares[rowStartIndex + 2])
if (verticalWinner != null) return verticalWinner; 85 {
88 return _playedSquares[rowStartIndex];
var diagonalWinner = GetWinnerDiagonally(); &7 }

if (diagonalWinner != null) return diagonalWinner; B8 }
g9 return null;
return string.Empty; oe ¥

namespace src

{

-

public class TicTacToeCbhjectCalisthenics

{

private Player _currentPlayer = Player.X;
private Board _board = new Board();

public Player GetCurrentPlayer()
I
1

}

return _currentPlayer;

public void PlaceMarker(Square square)

{
if(_board.IsSquarePlayed(square))

return;

_board.PlaceMarker(square, _currentPlayer);

AlternatePlayer();
}
private void AlternatePlayer()
{
if (_currentPlayer == Player.X)
1
_currentPlayer = Player.0;
return;
¥
_currentPlayer = Player.X;
¥
public Player GetWinner()
1
return _board.GetWinner();
¥

Second implementation, after
Object Calisthenics lesson

92 vs 39 lines of code
Simpler

Learnings

m Introduction to TDD and its importance for writing good code

m [ntroduction to important concepts as Object Calisthenics
and the Transformation Priority Premise

m Eye openers:
- Wrap all primitives and strings in classes

— Focus on behavior

Reflections

m First experience with mob programming (fun, but
exhausting)

m Always room to improve
m More spare time between sessions to practice

Thank you for your attention!

Any questions?

Notes and links

m Presentation inspired by blog post
by Pierre Bouillon

m GitHub repository with complete Tic Tac Toe example:

https://dev.to/pbouillon/writing-cleaner-code-with-object-calisthenics-1ea0
https://github.com/maattss/tic-tac-toe-kata

