Most important things to know
about classic TDD

TDD in general

* Motivation
* Never been afraid to touch some mazy legacy code fearing you’d break it?
* Unit tests are like a manual.

* “Any fool can write code that a computer can understand. Good programmers write code that humans can understand” (Martin
Fowler)

* Precondition

* Domain knowledge must be available (p.e. by a domain expert or a domain specific language)

* Some Rules
* No upfront design assumptions. Design emerges completely from the code, hence it solves over-engineering problems.
* Tests must be mutually independent
* Never refactor with failing tests (or no tests)
* Only use what you can control
* Rule of 3 for duplication cleanup (duplication is cheaper than abstraction in terms of coupling)

TDD approach

Baby Steps
* Only write as much of code for a unit test to fail.
* Only write as much of production code for making a failing unit test pass

* Internal test structure

* Arrange
e Act
* Assert

* The three ways forward in Test Code

* Red
* All Green
e Refactor

* The three ways forward in Production Code
* Fake implementation
* Obvious implementation
* Generalization trough triangulation

* Only one execution path per test

* Naming Test-Classes
* Test asingle Class: [ClassName]Sould vs. [ClassName]Tests
* Test a feature: [FeatureName]Tests

* Naming Test-Methods
* [behave]With[Inputs] vs. test[MethodName][expected behaviour]With[Inputs]
* Beispiel: BankAccountSould.have_the_balance_increased_after_a_deposit vs. BankAccountTests.testDepositincreasesBalance
=> It dosen’t really matter witch naming convention is used, but it is important, that name of the testmethod mirrors the business rule under test.

Transformation

* Ruleset to avoid overengineering

priority premises

TRANSFORMATION STARTING CODE FINAL CODE

1 {3 => nil return nil

2 nil => constant return nil return “1”

3 constant => constant+ return “1” return “1% + 227

4 constant => scalar return “17” + “27 return argument

5 statement => statements return argument return arguments

6 unconditional => conditional return arguments if (condition)return arguments
7 scalar => array dog [dog, cat]

8 array => container [dog, cat] {dog = “DOG", cat = “CAT"}
9 statement => tail recursion a+b a + recursion

10 conditional => loop if (condition) while (condition)

11 tail recursion => full recursion a + recursion recursion

12 expression => function today - birthday CalculateAge ()

13 variable => mutation day var day = 10; day = 11;

14 switch case

e Application of the Rules

* Rule 1 is sufficient to satisfy the first failing test case
* Ifrule nisn’t adequate anymore, then apply rule n+1

Object Calisthenics (beauty & strength

Rule

Only one level of indentation per method

Why

Focus (single responsibility)
Size

Don’t use the ELSE keyword

Single execution line
Handle complex cases by polymorphism (Stragegy-Pattern)
Use a Map

Wrap all primitives and strings

Better readability
Bundle behaviour and data

First class collections (wrap all collections)

Bundle behaviour and data
Encapsulation
Streaming

No getters/setters/properties

Bundle behaviour and data

One dot per line

Readability

Hiding implementation (by not passing attribut values of an Object)
Only talk to friends (Law of Demeter)

Tell, don’t ask moves behavoiur from the calling class to the called class

Don’t abbreviate

Long names are indicators for missing concepts
Avoid confusion

Keep entities small

Single responsibility
Complexity (no class over 50 lines, no package over 10 files)

No classes with more than two instance variables

Low cohesion for actuator classes
High cohesion only for orchestrators classes

Some Code snippets for visualisation

Only one level of indentation per method

String board() {
StringBuffer buf = new StringBuffer();
collectRows(buf);

String board() { return buf.toString();

StringBuffer buf = new StringBuffer(); }
for (int 1 = 0; 1 <10; i++) {

for (int j = 0; j < 10; j++)
buf .append(data[i1[j1); ‘
buf.append("\n");
}

return buf.toString(); void collectRow(StringBuffer buf, int row) {
} for Cint i = 0; 1 < 10; i++)
buf.append(dotalrow][i]);
buf.append(“\n");

void collectRows(StringBuffer buf) {
for (int i = 0; 1 < 10; i++)
collectRow(buf, 1);
}

No getters/setters/properties

g.decrease();

q.setQuality(q.getQuality() - 1); -

q.quality = 0; -

g.dropToZero();

Source: https://bolcom.github.io/student-dojo/legacy-code/DevelopersAnonymous-ObjectCalisthenics.pdf

Wrap all primitives and strings

public class Discounter {

private Money discount;

public class Discounter {

public int applyTo(int initialPrice) {
return initialPrice - discount; 1

} B o e i AT

public class Money {
i

private int discountInCents;

e - - - O . S S S S O e

First class collections (wrap all collections)

public class Accounts {

private Map<AccountId, Account> accounts = new HashMap<Accountld, Account>();

public Money applyTo(Money initialPrice) {
private int discount; ﬁ return initialPrice.minus(discount);
— L }

