
Most important things to know
about classic TDD

TDD in general
• Motivation

• Never been afraid to touch some mazy legacy code fearing you’d break it?

• Unit tests are like a manual.

• “Any fool can write code that a computer can understand. Good programmers write code that humans can understand” (Martin
Fowler)

• Precondition
• Domain knowledge must be available (p.e. by a domain expert or a domain specific language)

• Some Rules
• No upfront design assumptions. Design emerges completely from the code, hence it solves over-engineering problems.

• Tests must be mutually independent

• Never refactor with failing tests (or no tests)

• Only use what you can control

• Rule of 3 for duplication cleanup (duplication is cheaper than abstraction in terms of coupling)

TDD approach
• Baby Steps

• Only write as much of code for a unit test to fail.

• Only write as much of production code for making a failing unit test pass

• Internal test structure
• Arrange

• Act

• Assert

• The three ways forward in Test Code
• Red

• All Green

• Refactor

• The three ways forward in Production Code
• Fake implementation

• Obvious implementation

• Generalization trough triangulation

• Only one execution path per test

• Naming Test-Classes
• Test a single Class: [ClassName]Sould vs. [ClassName]Tests

• Test a feature: [FeatureName]Tests

• Naming Test-Methods
• [behave]With[Inputs] vs. test[MethodName][expected behaviour]With[Inputs]

• Beispiel: BankAccountSould.have_the_balance_increased_after_a_deposit vs. BankAccountTests.testDepositIncreasesBalance

=> It dosen’t really matter witch naming convention is used, but it is important, that name of the testmethod mirrors the business rule under test.

Transformation priority premises
• Ruleset to avoid overengineering

• Application of the Rules
• Rule 1 is sufficient to satisfy the first failing test case
• If rule n isn’t adequate anymore, then apply rule n+1

Object Calisthenics (beauty & strength)
Rule Why

Only one level of indentation per method • Focus (single responsibility)
• Size

Don’t use the ELSE keyword • Single execution line
• Handle complex cases by polymorphism (Stragegy-Pattern)
• Use a Map

Wrap all primitives and strings • Better readability
• Bundle behaviour and data

First class collections (wrap all collections) • Bundle behaviour and data
• Encapsulation
• Streaming

No getters/setters/properties • Bundle behaviour and data

One dot per line • Readability
• Hiding implementation (by not passing attribut values of an Object)
• Only talk to friends (Law of Demeter)
• Tell, don’t ask moves behavoiur from the calling class to the called class

Don’t abbreviate • Long names are indicators for missing concepts
• Avoid confusion

Keep entities small • Single responsibility
• Complexity (no class over 50 lines, no package over 10 files)

No classes with more than two instance variables • Low cohesion for actuator classes
• High cohesion only for orchestrators classes

Some Code snippets for visualisation
Only one level of indentation per method Wrap all primitives and strings

First class collections (wrap all collections)No getters/setters/properties

Source: https://bolcom.github.io/student-dojo/legacy-code/DevelopersAnonymous-ObjectCalisthenics.pdf

