[ISKOV SUBSTITUTION
PRINCIPLE
]

AY

CONTENT

e What is LSP?

e Why we need that?
e How we do that?

e Example

BARBARA LISKOV

Developed the Liskov substitution principle

e
-
-

AL 4
. T3 S
' s T ks A
‘ Jadd ,_rd-_ 3 u-- < i
BRI % S sl N

TWHAT ?

Subtypes must be behaviorally
substitutable for their base types.
Barbara Liskov, 1988

e Introduced by Barbara Liskov 1988
e Part of the SOLID-Principles

TWhY 1

Class inheritance and subtype polymorphism are
primary mechanisms for supporting the open-close
principle.

TWHY?

e ... gives us away to characterize good inheritance
hierarchies

e ... helps us to avoid violations of the open-close
principle

THOW?

void someClientMethod (SomeClass sc) SomeClass
. . o +someMethod() : void
sc.someMethod () ; 4
T |
} | |
SomeSubclassi SomeSubclass2
+someMethod() : void +someMethod() : void

LSP additionally requires behavioral
substitutability.

THOW?

©® someClientMethod should not be able to
distinguish objects of SomeSubclass1 and
SomeSubclass2 from objects of SomeClass

Rectangle

+setWidth(int width)
+setHeight(int height)

+areal():int

S

Square

+setWidth(int width)
+setHeight(int height)

EXAMPLE

class Square extends Rectangle
public void setWidth (int width) {

super.setWidth (width) ;

super.setHeight (width) ;

public void setHeight (int height)
super.setWidth (height) ;
super.setHeilght (height) ;

{

PROBLEMS ?

O Do you see any problems?

PROBLEMS !

void someClientMethod (Rectangle rec) {
rec.setWidth (5) ;
rec.setHeight (4);
assert (rec.area () == 20);

PROBLEMS !

e The behavior of a Square object is not

consistent with the expectations of
someClientMethod on the behavior of a
Rectangle.

e The Rectangle/Square hierarchy violates LSP!

Square is NOT BEHAVIORALLY
o SUBSTITUTABLE for Rectangle.

SOLUTION

«interface»
Shape

+area():int

Square Rectangle
+setSize(int size) +setWidth(int width)
+area(): int +setHeight(int height)

+area(): int

CONCLUSION

e | SP violations are difficult to finc

e examples could be found everywhere in our code (i
guess)

e Refactoringis hard

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

