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How Clean Architecture, Onion Architecture, Hexagonal Architecture and Domain-
Driven Design play together




AGENDA

exagonal Architecture

* Onlon Architecture

 (lean Architecture

* Domain-Driven Design

* Domain-Driven Design Concepts

» Combining DDD and Architecture Patterns

* Final Thoughts



A GONAL ARCHITECTUSSE

» By Alistair Cockburn in 2005

» Aka Ports and Adapters

» Dependencies flow inwards




+ Relles on Interfaces

ENION ARCHITEC FURE

Onion Architecture

» By Jeffrey Palermo in 2003

§ L oncentric Layers

» Dependencies flow inwards




ETEAN ARCHITEC | URE

e Bopert C. Martin in 2012

* |nterface Adapters
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encies only

HoINt INwards

The Clean Architecture




SIHLARITIES & DIFFERENCES

# Lebendency Rule
» Separation of Concerns

» |establility

* Independence from Frameworks,
Databases, Ul

- Moaularrty

» Mainly in lerminology

. Slightly

. Slightly

flerent layer organization

fferent focus



DOMAIN-DRIVEN DESIGIN

F b tnic Bvans In 2003
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» Modeling software to match a domain
according to Input from that domain’s experts

g
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» Concepts: Ubiguitous Language, Bounded

Contexts and many more



DD -CONCER S

Entities:

Objects defined by there identity, rather than there attributes

(Customer, Order, Product)

Value Objects:

Immutable objects that contains attributes but has no conceptual iIdentity

(Money, Date, Address)

Aggregates:

Coheslive clusters of domain objects that can be-

reated as a single unit.

(Order-Aggregate containing Order-Entr
Aggregate Roots:

(Order-Entity)

oy Corder

_ines, Payments and Shipping Address)

—ntry point for updating or retrieving the aggregate’s data.



DD -CONCER S

Domain Services:

Contain domain logic that doesn’t naturally fit within an entity or value object
(TaxCalculator)

Repositories:

-ncapsulate logic required to access domain objects from a data source.
’rovide Collection-Like Interface

(OrderRepository)
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HINAL THOUGH S

Separating the domain code from application

So, what architecture should
we use for this new project?

1 0 INirastructure code

Architecture patterns aim directly for an

solation of the ,,core” logic

With DDD the domain separation It i1s more
Ol a side effect

Complementary approaches
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« Sources:

» https://alistaircockburn.us/hexagonal-architecture/

» https://jefireypalermo.com/2008/0//the-onion-architecture-part-1/

» https://blog.cleancoder.com/uncle-bob/2012/08/1 3/the-clean-architecture.html

» https://martinfowler.com/tags/domain?2620driven220design.html

« ALCOR Foundation Training Slides .
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