
LINKING ARCHITECTURE PATTERNS AND 
DDD

How Clean Architecture, Onion Architecture, Hexagonal Architecture and Domain-
Driven Design play together



AGENDA
• Hexagonal Architecture

• Onion Architecture

• Clean Architecture

• Domain-Driven Design

• Domain-Driven Design Concepts

• Combining DDD and Architecture Patterns

• Final Thoughts



• By Alistair Cockburn in 2005

• Aka Ports and Adapters

• Dependencies flow inwards

HEXAGONAL ARCHITECTURE



ONION ARCHITECTURE

• By Jeffrey Palermo in 2008

• Concentric Layers

• Relies on Interfaces

• Dependencies flow inwards



CLEAN ARCHITECTURE

• By Robert C. Martin in 2012

• Interface Adapters

• Dependencies only point inwards



SIMILARITIES & DIFFERENCES
• Dependency Rule

• Separation of Concerns

• Testability

• Independence from Frameworks, 
Databases, UI

• Modularity

• Mainly in Terminology

• Slightly different layer organization

• Slightly different focus



DOMAIN-DRIVEN DESIGN

• By Eric Evans in 2003

• Modeling software to match a domain 
according to input from that domain’s experts

• Concepts: Ubiquitous Language, Bounded 
Contexts and many more



DDD-CONCEPTS
Entities:
Objects defined by there identity, rather than there attributes
(Customer, Order, Product)

Value Objects:
Immutable objects that contains attributes but has no conceptual identity
(Money, Date, Address)

Aggregates:
Cohesive clusters of domain objects that can be treated as a single unit.
(Order-Aggregate containing Order-Entity, OrderLines, Payments and Shipping Address)
Aggregate Roots:
Entry point for updating or retrieving the aggregate’s data.
(Order-Entity)



DDD-CONCEPTS
Domain Services:
Contain domain logic that doesn’t naturally fit within an entity or value object
(TaxCalculator)

Repositories:
Encapsulate logic required to access domain objects from a data source.
Provide Collection-Like Interface
(OrderRepository)



ARCHITECTURE PATTERN AND DDD



FINAL THOUGHTS
• Separating the domain code from application 

and infrastructure code

• Complementary approaches

• With DDD the domain separation it is more 
of a side effect

• Architecture patterns aim directly for an 
isolation of the „core“ logic



THANK YOU FOR YOUR ATTENTION!

QUESTIONS?
• Sources:

• https://alistair.cockburn.us/hexagonal-architecture/

• https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

• https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

• https://martinfowler.com/tags/domain%20driven%20design.html

• ALCOR Foundation Training Slides 
patrick.ronecker@css.ch

https://alistair.cockburn.us/hexagonal-architecture/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://martinfowler.com/tags/domain%20driven%20design.html
mailto:patrick.ronecker@css.ch

