FINISING ARCHITEC TURE FPAT TERINS ZSE.
BB

How Clean Architecture, Onion Architecture, Hexagonal Architecture and Domain-
Driven Design play together

AGENDA

exagonal Architecture

* Onlon Architecture

 (lean Architecture

* Domain-Driven Design

* Domain-Driven Design Concepts

» Combining DDD and Architecture Patterns

* Final Thoughts

A GONAL ARCHITECTUSSE

» By Alistair Cockburn in 2005

» Aka Ports and Adapters

» Dependencies flow inwards

+ Relles on Interfaces

ENION ARCHITEC FURE

Onion Architecture

» By Jeffrey Palermo in 2003

§ L oncentric Layers

» Dependencies flow inwards

ETEAN ARCHITEC | URE

e Bopert C. Martin in 2012

* |nterface Adapters

f Lebenc

encies only

HoINt INwards

The Clean Architecture

SIHLARITIES & DIFFERENCES

Lebendency Rule
» Separation of Concerns

» |establility

* Independence from Frameworks,
Databases, Ul

- Moaularrty

» Mainly in lerminology

. Slightly

. Slightly

flerent layer organization

fferent focus

DOMAIN-DRIVEN DESIGIN

F b tnic Bvans In 2003

EEIN

[acklina Co mulexny N me Heart ol th uare

» Modeling software to match a domain
according to Input from that domain’s experts

g
5‘\‘*
°/

» Concepts: Ubiguitous Language, Bounded

Contexts and many more

DD -CONCER S

Entities:

Objects defined by there identity, rather than there attributes

(Customer, Order, Product)

Value Objects:

Immutable objects that contains attributes but has no conceptual iIdentity

(Money, Date, Address)

Aggregates:

Coheslive clusters of domain objects that can be-

reated as a single unit.

(Order-Aggregate containing Order-Entr
Aggregate Roots:

(Order-Entity)

oy Corder

_ines, Payments and Shipping Address)

—ntry point for updating or retrieving the aggregate’s data.

DD -CONCER S

Domain Services:

Contain domain logic that doesn’t naturally fit within an entity or value object
(TaxCalculator)

Repositories:

-ncapsulate logic required to access domain objects from a data source.
’rovide Collection-Like Interface

(OrderRepository)

RO EC | URE PAT TERN ANEY .

==t == —_——_-_~
—

o o ~
- -~ - 7 =~
-~ g —=L_J\nplication The
v -, | = Domain .
= Y P / e ETVICE 1 |
lew 1 == Servicel
. Jort) (Y
ceaait i
== (ontroller 1 - -
— / p < N

/ /
/ /

!
[] I
Controller 2
[
\ D
\

O fiity2 e

\ \
\\ \ = Domain
\ Servi
N\ —— ervice 2
~ N\
~ N\
~ N
\\ \\
~ ~
\\\ \\\ ” ” o= | L 4=
- _ S e - External Service
-~ - - _— e - - - ==

HINAL THOUGH S

Separating the domain code from application

So, what architecture should
we use for this new project?

1 0 INirastructure code

Architecture patterns aim directly for an

solation of the ,,core” logic

With DDD the domain separation It i1s more
Ol a side effect

Complementary approaches

G RANK YOU FOR YOUR AT TENTICHS

L e LIRS

« Sources:

» https://alistaircockburn.us/hexagonal-architecture/

» https://jefireypalermo.com/2008/0//the-onion-architecture-part-1/

» https://blog.cleancoder.com/uncle-bob/2012/08/1 3/the-clean-architecture.html

» https://martinfowler.com/tags/domain?2620driven220design.html

« ALCOR Foundation Training Slides .
patrick.ronecken@css.ch

https://alistair.cockburn.us/hexagonal-architecture/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://martinfowler.com/tags/domain%20driven%20design.html
mailto:patrick.ronecker@css.ch

